Algae & Water Hyacinth

Bioremediation potential for landfill leachate

Landfills

- Handle municipal solid waste (MSW), construction & demolition (C&D), and hazardous wastes.
- 1,754 reported US MSW landfills in 2007 received 137 million tons of waste
- Material & nutrient sinks
- Air & water pollution
 - CH₄, H₂S
 - Leachate

Landfill Leachate

- Every landfill has leachate
- Leachate from MSW
 - High NH3-N, BOD, Dissolved Solids, Suspended solids, heavy metals
- Many US landfills are now lined and fitted with pump systems

Leachate Contents

Compound	Concentration
Arsenic	60.2μg/L
Chromium	77.4μg/L
Iron	6410μg/L
Potassium	574mg/L
Sodium	2290mg/L
Ammonia as N	1300mg/L
Ammonium as N	1200mg/L
COD	2100mg/L
Electroconductivity	1800μS/cm
рН	7.6
Orthopohsophorus	19mg/L

Leachate Treatment Paths

What to do with leachate?

- Conventional leachate treatment
 - Trucked to wastewater treatment facilities
 - High ammonia levels creates problems for facilities
 - Cost is High
- Treatment ranges from ponds to electrochemical oxidation
- Treatment Cost is often prohibitive and highly energy consumptive causing difficulties
- Efficient treatments transfer energy cost to environment and sacrifice time

The Ecological Approach

- Increasing interest in environmentally driven systems
 - Lower energy costs
 - On site treatment
- Algae
 - Associated with polluted water
 - Vast biodiversity
- Water Hyacinth
 - Hardiness to nutrients and electroconductivity
 - Easy to harvest
 - Potential for anaerobic digestion

Research

- Water Hyacinth batches removed 24%-80% of heavy metals from serial concentrations in leachate (El-Gendy, 2008)
 - Fast initial adsorption at roots
 - Slower long-term uptake driven by vascular system
- Water Hyacinth batches removed >90% of total nitrogen and phosphorous in diary farm effluent (Sooknah and Wilkie)
- Significant uptake of heavy metals from solution, survival in solutions ~3mg/L total metals (Soltan and Rashed, 2001)
- Potential for biofuel production and nutrient recycle with anaerobic digestion of Water Hyacinth (Wilkie and Evans, 2010)
- Water Hyacinth utilized in stormwater/leachate pond at Escambia County landfill (Mulamoottil et al, 1999)

Experiments

- Water Hyacinths placed in 20 gallon batches of 5, 10, 20, & 50% leachate dilutions to test survival
- 250 gallon batches of 10% leachate; one containing Water Hyacinth the other left alone
 - Conductivity, pH, orthophosphorus, NH₃-N, and cell counts monitored
- 2 liter batches of 25, 50, & 75% dilutions of leachate
 - 3 replicates of each dilution; one dilution allowed to grow algae before use the other using fresh leachate

Survival of Hyacinths in Leachate Dilutions

5% Leachate

20% Leachate

10% Leachate

50% Leacahte

250 Gallon Batch Conductivity

250 Gallon Batch NH₃-N Nitrogen

250 Gallon Batch Orthophosphorus Concentration

250 Gallon Batch Cell Counts

2-L Batch Results

Sample	Initial Conductivity (mS/cm)	Final Conductivity (mS/cm)	Survival (# of Specimens)
25% Leachate w/ Algae	2.45	1.88	6 of 6
25% Fresh Leachate	4.44	2.86	0 of 6
50% Leachate w/ Algae	3.84	2.88	6 of 6
50% Fresh Leachate	7.88	5.23	0 of 6
75% Leachate w/ Algae	5.46	4.12	6 of 6
75% Fresh Leachate	11.31	7.81	0 of 6

2 Liter Batch Experiment Day 1

2 Liter Batch Experiment Day 4

Conclusions

- Change in conductivity similar between Hyacinths and native Algae
- Major removal of NH₃-N appears non-biological despite uptake by Hyacinth and Algae
- Phosphorus appears to cycle within decreasing trend
 - Possibly influenced by outside sources (animal waste, grass clippings)
- Water Hyacinth grown in leachate dilutions containing algae has greater survivability than in fresh diluted leachate
 - Possibility for two stage treatment utilizing lower volume of clean/treated water
- Investigate utilization of water hyacinth biomass after cultivation in leacahte

References

- Delgado M., Bigeriego M., and Guardiola E. Uptake of Zn, Cr and Cd by water hyacinth. Water Resources. Vol 27,
 No 2, Pp 269-272. 1993. Pergamon Press.
- A S El-Gendy. Modeling of heavy metals removal from municipal landfill leachate using living biomass of water hyacinth. International Journal of Phytoremediation. Vol 10, Pp 14-30. 2008. Taylor and Francis.
- El-Gendy AS., Biswas N., Bewtra JK. A floating aquatic system employing water hyacinth for municipal landfill leachate treatment: effect of leachate characteristics on the plant growth. Journal of Environmental Engineering Sciences. Vol 4, Pp 227-240. 2005. NRC Press
- Kamal M., Ghaly AE., Mahmoud N., Cote R. *Phytoaccumulatio of heavy metals by aquatic plants*. Environment International. Vol 29, Iss 8, Pp 1029-1039. February 2004. Elsevier.
- Kadlec R. from Mulamoottil G., McBean E., Rovers F., eds. *Constructed wetlands for the treatment of landfill leachates*. CRC Press. 1998.
- Mulamoottil G., McBean E., Rovers F., eds. Constructed wetlands for the treatment of landfill leachates. CRC Press. 1998.
- Reddy KR., Debusk WF. *Growth characteristics of aquatic macrophytes cultured in nutrient-enriched water: I.*Water hyacinth, water lettuce, and pennywort. Economic Botany. Vol 38, No 2, Pp 229-239. April 1984. Springer.
- Soltan ME., Rashed MN. Laboratory study on the survival of water hyacinth under several conditions of heavy metal concentrations. Advances in Environmental Research. Vol 7, Pp 321-334. Elsevier.
- Sooknah RD., and Wilkie AC. *Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy manure wastewater.* Ecological Engineering. Vol 22, Pp 27-42. 2004. Elsevier.
- Wilkie AC., and Evans JM. *Aquatic Plants: an opportunity feedstock in the age of bioenergy.* Biofuels. Vol 1, No 2 Pp 311-321. 2010. Future Science Group.