Generating Energy from Brewery Wastes

James Sutton Undergraduate, SNRE

Presentation Objectives

- Motivation for study
- Explanation of biogas
- Project Overview
- Results
- Future Implications

Current Problems

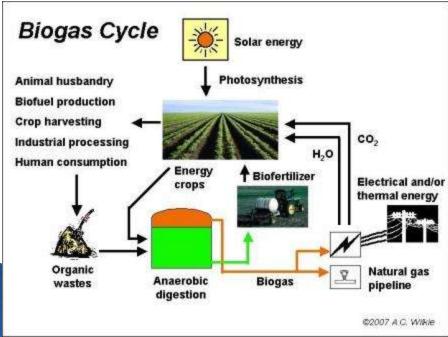
- Climate change greenhouse gas emissions
- Peak oil Becoming harder to find and more expensive to extract
- Population growth about 6.7 billion and counting (in 1850 about 1.2 billion)

Biofuels

Fuels that come from biomass

This energy ultimately comes from the Sun and harnessed by plants via photosynthesis

Anaerobic digestion


- Natural process in which microorganisms break down organic material in the absence of oxygen
- Results in biogas production
- Occurs in wetlands and cows

Biogas

- <u>Def</u> Gas produced during the biological decomposition of organic material in an anaerobic environment
- The organic sludge byproduct can be used as a fertilizer
- Composed of about 65% CH_4 , 30% CO_2 , <5% H_2 and H_2S

Motivation for Brewery project

- Breweries are sources of organic waste
- Organic material can be anaerobically digested then biogas can be used as an energy source in brewing
- Reduces the use of fossil fuels and reduces cost for business

Overview of Project

- Collect organic wastes from local brewery
- Determine the amount of biogas that could be produced under optimal conditions
- Calculate the amount of energy this biogas could produce
- Determine the cost that could be offset with using biogas as energy

Swamp Head Brewery

- Began brewing in April 2009
- Brewing about 2 batches per week
- Currently spent grains go to a cattle farmer and liquid wastes go into the drain

COD and VS

- Chemical oxygen demand indirectly measures organic content in water
- It measures the ability of water to consume oxygen during the decomposition of organic matter
- Volatile solids (VS) Wet material is dried, then combusted; the difference=VS

Research Methods

- Use samples of grain and trub and determine potential biogas production
- Total weight of grains per batch assumed to be five 55 gallon barrels (~588kg wet)
- Estimates used: 350L CH₄/kg COD 318L CH₄/kg VS

Weight of wasted grains per brew: 588 kg

Table 1. Potential methane and power generation of spent grains using estimations based on chemical oxygen demand and volatile solids.

	g / kg Grains		i i	Potential Power (Btu/ Month)
COD	258	53,125	4,132	14,102,372
Volatile Solids	217	40,517	3,151	10,755,476

Table 2. Potential methane and power generation of trub.

£	g VS/ L Sample	g COD/ L Sample	L CH4/ L Sample	kWh/ L Sample	Btu/ L Sample
	97.75	196.08	68.14	0.66	2260.95

Implications

- The organic wastes at the brewery have a potential to produce a significant amount of energy for onsite use
- Anaerobic digestion could be used in other industries that produces organic wastes
- Biogas would be used as an alternative to fossil fuels
- Helps to mitigate climate change by reducing carbon emissions and reducing the use of synthetic fertilizers

References

- Hardwick, William. Handbook of Brewing. New York: CRC Press, 1994. 89-90. Print.
- Ince, Bahar K., Orhan Ince, Ken Anderson, and Semiha Arayici. "Assessment of Biogas Use as an Energy Source from Anaerobic Digestion of Brewery Wastewater." Water, Air and Soil Pollution 126. (2001): 239-251. Web. 2 Jul 2010.
- Keenen, John D, and Iraj Kormi. "Anaerobic digestion of brewery by-products." Journal (Water Pollution Control Federation) 53.1 (1981): 66-77. Web. 25 May 2010.
- Neira, K., and D. Jeison. "Anaerobic Co-digestion of surplus yeast and wastewater to increase energy recovery in breweries." *Water Science and Technology* 61.5 (2010): 1129-1135. Web. 25 May 2010.
- Ross, Charles C., and James L. Walsh. Handbook of Biogas Utilization. 2nd. Muscle Shoals, AL: Tennessee Valley Authority, 1996. 27. Print.
- Zitomer, Daniel H., Prasoon Adhikari, Craig Heisel, and Dennis Dineen. "Municipal Anaerobic Digesters for Codigestion, Energy Recovery, and Greenhouse Gas Reductions." Water Environment Research 80.3 (2008): 229-237. Web. 2 Jul 2010.