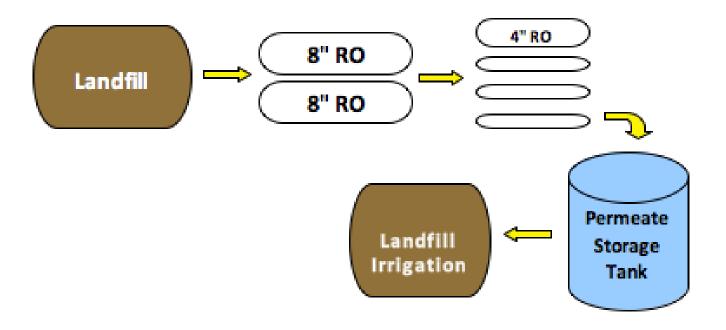
Phycoremediation of Landfill Permeate: A Mini Life Cycle Analysis

By: Sinclair Vincent
BioEnergy Summer School

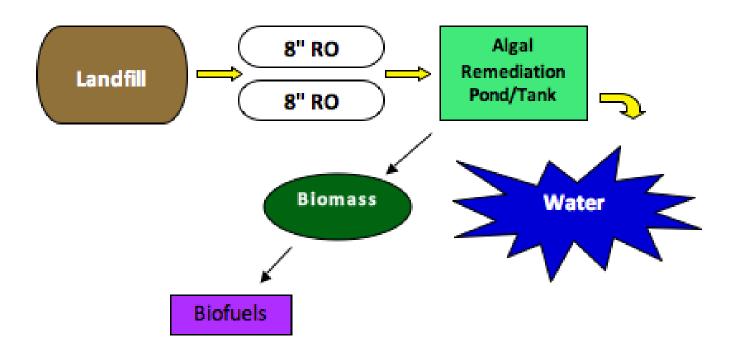

Landfills in Review

- Leachate from landfills is a current and pressing sustainability issue.
- Remediation Methods
 - Current: Transport to water treatment facility
 - Emerging: On-site biological, chemical or physical processes
 - Limited: Constructed wetlands
 - Experimental: Reverse osmosis, algae

Alachua County Southwest Landfill

- Current Treatment Method: Reverse Osmosis
 - Collection pipes drain into 40-ft. sump for storage
 - Pumped through 8" and 4" spiral wound membrane RO systems
 - Lowers ammonia levels to 5.1 ppm
 - Final permeate used for landfill cover irrigation

Current System Flow Chart


Phycoremediation

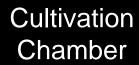
- Phycoremediation is the use of algae for the removal of pollutants from wastewater and the capture of CO₂ emissions (Olguin 2003).
 - Extensively researched in ecological engineering
 - Algae are effective at removing many organic and inorganic water contaminants

Benefits of Phycoremediation

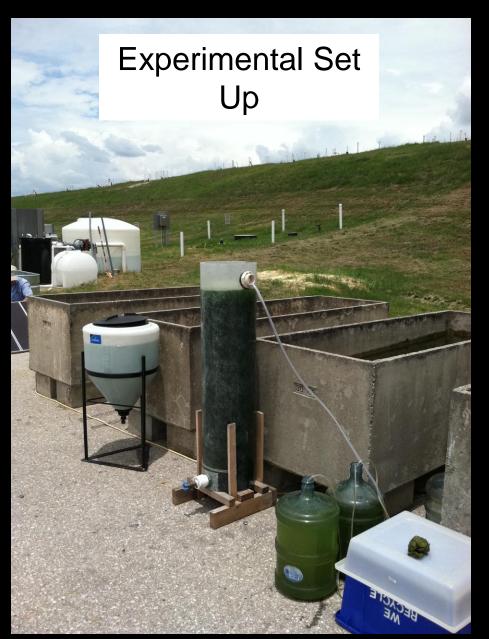
- Less energy consumed (solar powered)
- On-site remediation
- Water that meets treatment standards
- Algal biomass can be used for fertilizer, animal feed and biofuels
 - Microalgal biofuel production may only be economically viable when coupled with remediation (Pittman et al. 2011).

Phycoremediation Flow Chart

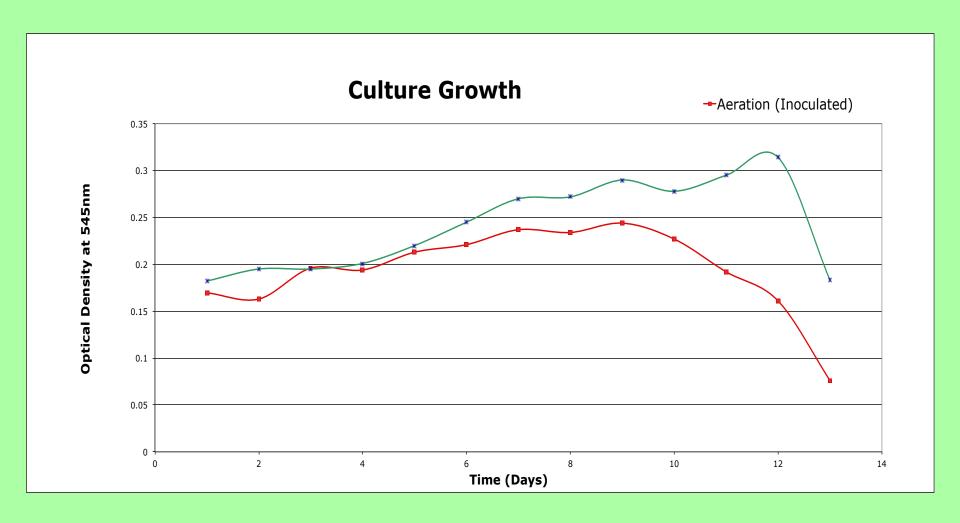
Objective

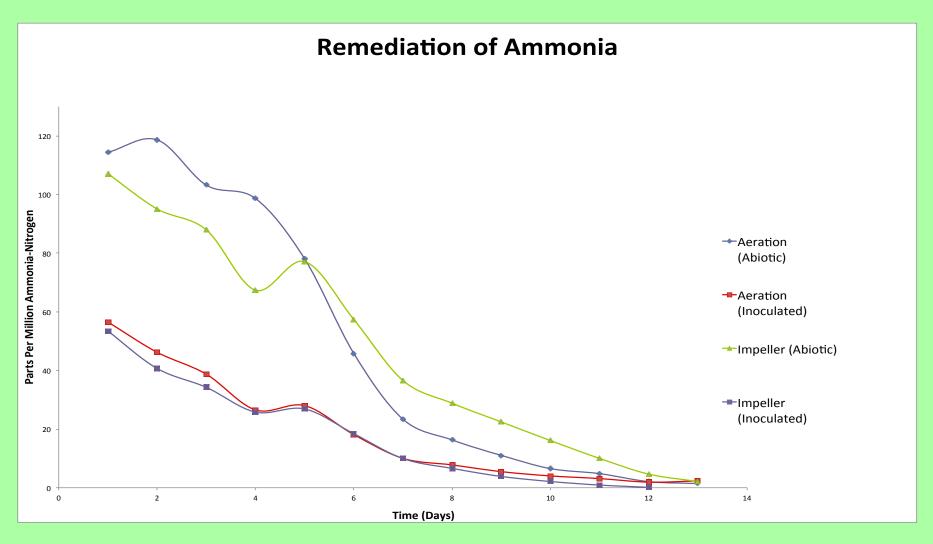

 Evaluate the cost and efficiency of phycoremediation compared to the second stage reverse osmosis system currently in place at ACSWL.

Methodology


- Four cultivation chambers were set up at ACSWL.
- Two chambers served as abiotic controls (filled with 790 L of permeate)
- Two chambers were filled with 50% permeate and 50% algal inoculum (790 L total)
- One control chamber and one inoculated chamber were mixed with a 1/6 Hp impeller pump. The remaining chambers were mixed with an air pump powering air stones.

Algal Inoculum




Methodology (cont.)

- Samples were taken daily for 13 days and measurements were taken for:
 - Ammonia
 - Optical density
- The energy consumption, cost and efficiency were then analyzed for the two remediation systems (RO and phycoremediation)

Results

Growth occurred in both chambers, but a higher growth rate was found with the impeller pump.

The chambers reduce ammonia levels below Groundwater Cleanup Target Levels of 2.8 ppm (FL DEP), partially by volatilization.

Cost of Reverse Osmosis		Cost of Algal Remediatio experimental design)	n (based on
Assumptions		Assumptions	
24 hours, 7 days/week		24 hours, 7 days/week	
Max Daily Treatment	4,500 gal.	Max Daily Treatment	26 gal.
Volume to be Treated	5,000,000 gal.	Volume to be Treated	5,000,000 gal.
Time Needed	1,111 days	Time Needed	192,308 days
	159 weeks		27,473 weeks
	3 years		528.3 years
Capital Cost		Capital Cost	
4" RO System	\$12,648.49	Building	\$1,500.00
Building	\$1,500.00	Electrical	\$2,000.00
Electrical	\$2,000.00	Plumbing	\$500.00
Plumbing	\$500.00	Controls	\$15,050.00
Controls	\$15,050.00	2 x 8" Pressure Vessels	\$900.00
2 x 8" Pressure Vessels	\$900.00	6 x 8" Membranes	\$1,500.00
4 x 4" Membranes	\$1,600.00	7.5 Hp Pump	\$2,300.00
6 x 8" Membranes	\$1,500.00	1/6 Hp Sub. Pump	\$68
Storage Tank	\$550.00	PVC	\$105.00
Irrigation System	\$1,250.00	Permits	\$2,500.00
Permits	\$2,500.00	Misc/Fittings/Shipping	\$490.00
Misc/Fittings/Shipping	\$490.00		\$26,913.00
	\$42,788.49		
Labor		Labor	
Hourly Part Time/Task	10 \$/hr	Hourly Part Time/Task	10 \$/hr
	3 hrs		3 hrs
Salary	\$30.00/day	Salary	\$30.00/day
Electricity Usage Estimate		Electricity Usage Estimate	
Unit Cost	\$0.145/kWh	Unit Cost	\$0.145/kWh
1.0 Hp Leachate Sump Pump	18 kWh/day	1.0 Hp Leachate Sump Pump	18 kWh/day
1.0 Hp Indoor Pump	18 kWh/day	8" RO High Pressure 7.5 Hp Pu	ımp 134 kWh/day
1.0 Hp Irrigation Pump	18 kWh/day	1/6 Hp Sub. Pump	2.0 kWh/day
8" RO High Pressure 7.5 Hp Ρι		Lighting and Control	12 kWh/day
Lighting and Control	12 kWh/day		,
Total	254 kWh/day	Total	166 kWh/day

RO with

Algal

Remediation

Combined

2-stage

RO

System

Membrane ReplacementMembrane Replacement4" Replacement Membrane\$400.008" Replacement Membrane\$250.00# of 4" Membranes4# of 8" Membranes68" Replacement Membrane\$250.00# of 8" Membranes6

\$3,100.00

Combined Two Stage RO System

Operational	Operational		DO 111	
Anti-Scalant 5 gal. (1 unit \$24.62)	\$1.03/day	Anti-Scalant 5 gal. (1 unit \$24.62)	\$1.03/day	RO with
Filter Cartridge (1 unit \$20.00)	\$1.42/day	Filter Cartridge (1 unit \$20.00)	\$1.42/day	Algal
Electricity	\$36.83/day	Electricity	\$24.07/day	Remediation
Membrane Replacement (1 set)	\$2.79/day	Membrane Replacement (1 set)	\$1.35/day	
	\$42.01/day		\$27.87/day	

System Membrane Replacement

Total Cost 1 Set

\$110.52/day

System Membrane Replacement

\$122,809.79/Total Vol.

Total Cost 1 Set

\$58.01/day

\$11,155,776.96/Total Vol.

\$1,500.00

Theoretical Cost of Algal Remediation (1 ha./528,344 gal./20 cm deep Pond)

Assumptions

24 hours, 7 days/week

Max Daily Treatment 66,043 gal.

Volume to be Treated 5,000,000 gal.

Time Needed 75.7 days
10.8 weeks

.21 years

^{*} Theoretical costs adapted (Benemann 1986).

Capital Cost		Labor	
Paddlewheel	\$20,000.00	Hourly Part Time/Task	\$10/hr
Site Preparation	\$1,000.00		3 hrs
Growth Ponds	\$9,250.00	Salary	\$30.00/day
Inoculum System	\$1,500.00		
Harvesting System	\$1,500.00	Electricity Usage Estimate	
Process Control	\$500.00	Unit Cost	\$0.145/kWh
Buildings/Vehicles	\$3,500.00	Paddlewheel	20 kWh/day
Electrical	\$1,000.00	1.0 Hp Leachate Sump Pump	18 kWh/day
		8" RO High Pressure 7.5 Hp	
Engineering	\$2,500.00	Pump	134 kWh/day
Working Capital	\$3,000.00	Lighting and Controls	12 kWh/day
2 x 8" Pressure Vessels	\$900.00		184 kWh/day
6 x 8" Membranes	\$1,500.00		
7.5 Hp Pump	\$2,300.00		

Algal Pond with Paddle Wheel

Membrane Replacement

Permits

Operational

Anti-Scalant 5 gal. (1 unit

8" Replacement Membrane \$250.00 \$24.62) \$1.03/day # of 8" Membranes 6 Filter Cartridge (1 unit \$20.00) \$1.42/day Electricity \$26.68/day System Membrane \$1,500.00 Membrane Replacement (1 set) \$1.35/day

\$30.48/day

Total Cost 1 Set

\$733.53/day

\$55,528.34/Total Vol.

\$2,500.00 \$50,950.00

Conclusions

- Phycoremediation uses much less energy.
- Phycoremediation of landfill permeate has great potential. Small scale would take hundreds of years, but full scale takes a fraction of the time.
- 1 ha. pond, 20 cm deep would take just .21 years for total remediation at a much lower cost.
- Growth needs to be optimized for biomass production.
- Future studies should focus on growth optimization and cost-effective pretreatment alternatives to RO.

References

- Olguin, E.J. (2003) Phycoremediation: key issues for cost-effective nutrient removal processes. Biotechnology Advances. 22: 1-2 81-91. DOI: 10.1016/j.biotechadv.2003.08.009
- Pittman, J.K., A.P. Dean, and O. Osundeko (2011)
 The Potential of Sustainable Algal Biofuel
 Production Using Wastewater Resources.
 Bioresource Technology. 102:1 17-25. DOI: 10.1016/j.biortech.2010.06.035
- Renou, S., J.G. Givaudan, S. Poulain, F. Dirassouyan, and P. Moulin (2008) Landfill leachate treatment: Review and opportunity. *Journal of Hazardous Materials*. 150: 3 468-493. DOI: 10.1016/j.jhazmat.2007.09.077