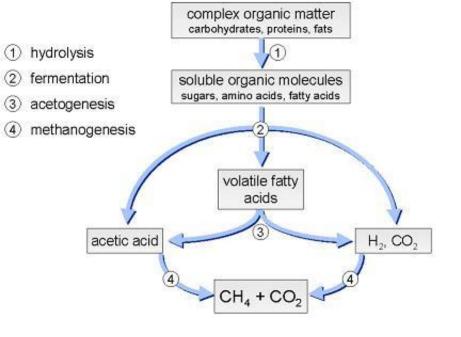
Anaerobic Digestion of Culled Tomatoes to Produce Biogas

Tim Sink BioEnergy Summer School 2011 Dr. Ann C. Wilkie

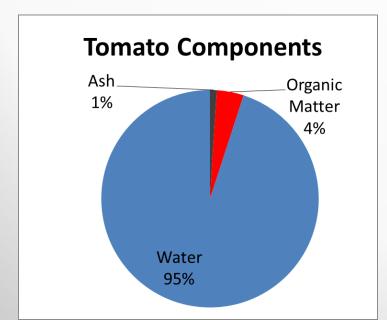
Summary of Problem

- * 40-50 thousand tons of tomatoes are culled annually from 4 packing houses in Immokalee, FL
 - Culled tomatoes are diseased, misshapen, or otherwise unmarketable
 - Disposal includes spreading over fields to decompose
- These tomatoes are a potential energy source
- Use of culled tomatoes in anaerobic digesters could help reduce outside energy reliance


Culled tomatoes being shipped to fields

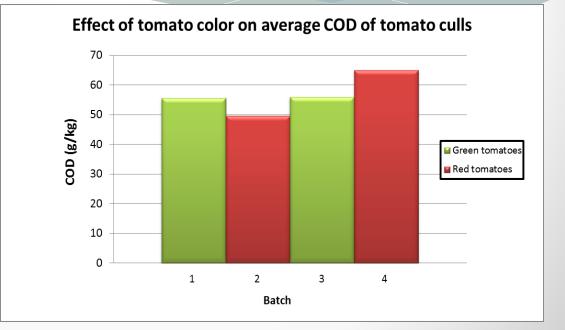
Possible Solution: Anaerobic Digestion

- Production of biogas (CH4 and CO2) from the degradation of organic material by microbes in the absence of oxygen
 - * 4 stages
- Amount of biogas produced depends heavily on what the digester is fed
- Food waste is an ideal feedstock for anaerobic digesters

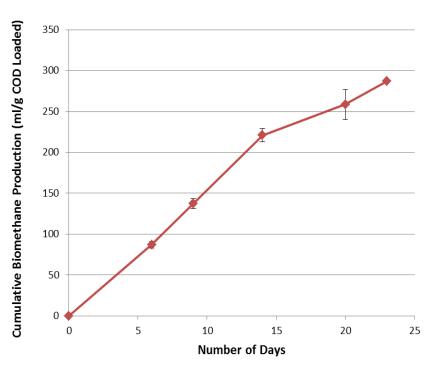

* pH

- * Conductivity
- * Total Solids/Volatile Solids (TS/VS)
- * Chemical Oxygen Demand (COD)
- Biomethane Potential (BMP)

- pH is acidic, range is around 4.5 ± .2
- Conductivity of tomatoes ranged around 6 mS/cm
- Tomato juice had up to 6.74 mS/cm

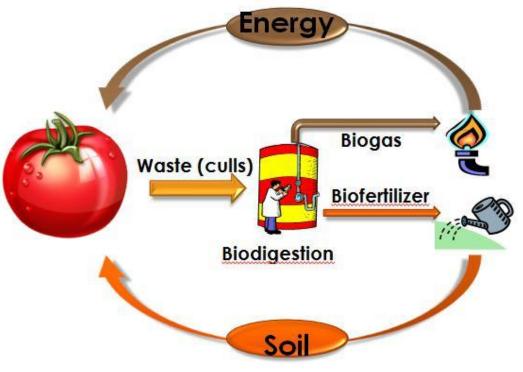

- Total Solids/Volatile Solids (TS/VS)
- * Total Solids ~ 5.35%
- * TS/VS Ratio ~ 80%

- Chemical Oxygen
 Demand (COD)
 - Color of tomatoes does not have an effect on COD
 - COD is higher in the pulp, but microbes consume the soluble juice more readily
 - COD of pulp is around
 120 g/kg
 - COD of juice is around 48 g/kg



	% by weight	COD	% Total COD
Tomato Juice	78.6	48	59.5
Tomato Pulp	21.4	120	40.5

- Biomethane Potential (BMP)
- Loaded at 2g COD/L
- 287 ml/g COD Loaded at day
 23



Summary of Properties of Digestion

- * pH is acidic
 - Monitoring the digester is necessary to prevent acidification
- Tomatoes are approximately 78.6% juice and 21.4% pulp
- The soluble juice is the most readily available portion of the tomato for the microbes
- 60% of the tomato is readily available for microbial uptake while 40% will undergo hydrolysis over time before becoming available
- Digestate is a possible fertilizer

Anaerobic Digester

- Easy and cheap to build
- * Simple stirring system
 - * Large surface area for microbial colonies

Anaerobic Digester

Anaerobic Digester

Results

- Feasible for use in an anaerobic digester
- Convenient for tomato packing houses
 - * Centralized location
- Beneficial both
 economically and
 environmentally
- Helps to achieve ultimate goal of sustainability

Future Studies

- * Continue monitoring digester
- * Determine optimum loading rate
- Research into changing operating conditions
 - * Pulp vs juice
 - * Different inocula
 - * Manure, hydric soil methanogens
- * Use of tomato digestate as fertilizer

Questions/Comments

Thank You