Microalgae Growth on Crude Glycerol

By: Kalvin Weeks

What are microalgae?

 Microalgae are unicellular organisms, usually autotrophic, capable of growing in the most diverse environments found across the earth

- Responsible for petroleum deposits
- Vast number of species estimated to be in the millions
- Characteristics comparable to autotrophs and heterotrophs

Microalgal Advantages

- Can be grown on un-arable land, grown in salt water bodies (oceans and bays), and grown on water unfit for human consumption or agriculture
- These organisms can reach high densities per unit area and produce many marketable products such as:
 - o Biomass (protein feedstock for animals and humans)
 - Lipids (used as a feedstock for production of biofuels)
 - Health Additives (omega-3 fatty acids)

Crude Glycerol

- Crude Glycerol or bottoms is a co-product of biodiesel production
- Formed when methanol replaces glycerol, the 3 chain carbon backbone of triglycerides (oils).
 - High energy density
 - Low cost
 - Contains impurities (methanol and soaps)

Triglyceride

Biodiesel Process

Hypothesis

- Algae can be grown on crude glycerol to take advantage of this low-cost, energy dense carbon source.
- Mixotrophic growth using crude glycerol will result in higher growth rates and cell densities.

Objectives

- Evaluate crude glycerol as a source of carbon for algal growth which will result in:
 - Enhanced algal growth
 - Enhanced lipid production
 - Economical source of energy dense carbon

Methodologies

- Algae were grown under laboratory conditions
 - Autotrophically and mixotrophically grown with 12 hours light/ 12 hours dark
 - Heterotrophically grown in black flasks to prevent light penetration
 - Temperature kept constant in both containers at 30°C
 - Aerated and shaken daily

Variables

Carbon sources:

- Crude Glycerol
- Pure Glycerol

Concentrations:

- .1 g/L (mixotrophic)
- 1 g/L (heterotrophic)

Controls were an autotrophic triplicate with no additives, and a heterotrophic triplicate with no additives

1 st Triplicate	2 nd Triplicate	3 rd Triplicate	4 th Triplicate	5 th Triplicate	6 th Triplicate
Autotrophic Control	Mixotrophic Pure Gly.	Mixotrophic Crude Gly.	<u>Heterotrophic</u> Control	<u>Heterotrophic</u> Pure Gly.	Heterotrophic Crude Gly.
200mL Algae	200mL Algae	200mL Algae	300mL Algae	300mL Algae	300mL Algae
No additions	.1 g/L Pure Glycerol	.1 g/L Crude Glycerol	No additions	1 g/L Pure Glycerol	1 g/L Waste Glycerol

Measurements

- Optical Density
 - Measured at 545nm and 680nm
- o pH
- Lipid stain analysis
 - Used Nile Red stain dissolved in acetone
 - Fluoresces yellow under UV illumination

Mixotrophic Growth

Mixotrophic Growth

- Crude Glycerol grew to higher densities than both the control and pure glycerol
 - Fascinating find since impurities show to result in increased growth

Mixotrophic Concentration (g/L) from OD @ 545nm

Heterotrophic Concentration (g/L) vs. Days from OD @ 545nm

In heterotrophic experiments, crude glycerol performed better at cell growth rate and reached higher cell densities.

Lipid Stain

Mixotrophic Crude Gly. – 4 days into experiment

Mixotrophic Crude Gly. – 4 days into experiment

Mixotrophic Crude Gly. – 4 days into experiment

Heterotrophic Crude Gly. – Final Day

Heterotrophic Crude Gly. – Final Day

Results

- Crude Glycerol outperforms both control and pure glycerol in both mixotrophic and heterotrophic trials
- Growth Rate: (calculated by (day 2 day 1)+ (day 3 day 2)....etc. and then divided by total days)

Autotrophic Control	Mixotrophic Pure Gly.	Mixotrophic Crude Gly.	Heterotrophic Control	Heterotrophic Pure Gly.	Heterotrophic Crude Gly.
.040 g/L/day	.047 g/L/day	.076 g/L/day	003 g/L/day	.023 g/L/day	.095 g/L/day
		1.9x the growth rate of control			4.1x the growth rate of pure gly.

- Growth rates for crude glycerol is higher than all other trials
 - Initial Growth rates for heterotrophic trials were much higher than average growth rates: 0.36 g/L/day
- Studies of optical densities shows a higher cell density present in flasks with crude glycerol
- The use of crude glycerol promotes lipid accumulation
 - Excess carbon is used up and stored in oils

Conclusions

- Algae can grow on crude glycerol
 - Crude glycerol resulted in higher growth rates and cell densities

 Growth on crude glycerol resulted in lipid synthesis

 Heterotrophic growth conditions show a more rapid growth rate

What does this mean?

- Algae can first be grown to a maximum cell density with natural sunlight and mediums (Landfill Permeate)
- Collected into a mixotrophic system
 - Crude glycerol is added
 - Algae will grow on both sunlight and surplus crude glycerol
- Mixotrophic system transformed to Heterotrophic
 - Algae become stressed and immediately absorb crude glycerol and store in the form of lipids

Results

- Increased cell density
- Increased volume of lipids per unit volume of algae
- Cultivation system is more optimized, more efficient, resulting in a more economical production system

- This algae is cheaper to process and contains more marketable items per unit weight
- Further steps will include processing the lipids into biodiesel, which will result in more crude glycerol which can be recycled back into the cultivation system
- Once a burden, crude glycerol is an economical choice for algal production

