Design of an Airlift Column Photo-Bioreactor that Increases Remediation Rates of Reverse Osmosis Permeate **Jose St Louis 2012 BioEnergy and Sustainability School** August 7, 2012

Landfill Leachate

- A liquid solution resulting from the extraction of soluble constituents from waste in landfills by downward percolating water.
- Analogous to the liquid that sometimes collects at the bottom of trash cans
 - Why is it important?
 - Landfill leachate has a very high pollution potential
 - Landfills are required by law to manage leachate
 - How is it handled?
 - Widely trucked to waste water treatment plants

Alachua County Southwest Landfill (ACSWL)

- Experimenting with reverse osmosis (RO) system to remediate leachate
- Advantages
 - Quickly removes most of the contaminants from the leachate
- Disadvantages
 - Energy intensive
 - Inefficient at ammonium removal
 - Requires multiple run-throughs to remediate the leachate to dischargeable levels

ACSWL -BEST Project

- BEST and the ACSWL partnered to create a combined algal/RO remediation system
 - Algae remediate ammonium after single stage RO
 - Permeate (the result of single RO run) is a nitrogen source for algae
- Advantages
 - Less energy intensive because the sun powers the algal remediation
 - Remediates permeate to dischargeable levels
- Disadvantages
 - Takes a longer time for remediation to occur

Objective

• Design a photo-bioreactor capable of increasing the algal remediation rates of reverse osmosis permeate

Types of Photo-bioreactors

• What is a photobioreactor?

- Types of photobioreactors:
 - Flat plate reactors
 - Tubular reactors
 - Bubble column reactors
 - Airlift reactors

Airlift Reactors

• Very defined flow

Modifications

- Focused on increasing mixing within the system
 - Mixing increases mass transfer rates and light/dark cycles (Posten 2009)

Methodology

- Three bioreactors were constructed out of identical containers
 - 1 bubble column, 1 airlift, 1 airlift modified with static mixers
- Identical lighting, air, and CO₂ supply
- pH controlled CO₂ delivery

Methodology (cont.)

- Bioreactors inoculated with 91% algae and 9% permeate
- Supplemented with required elemental nutrients (based on Adrian Brene's experimentation)
- Samples taken roughly every two hours
- Measured:
 - pH
 - Optical density
 - Ammonia
 - Ammonia volatilization controlled by low pH (6.5-6.7)

Experimental Set-up

Results

Optical Density of photo-bioreactors over time

Results (cont.)

Change in ammonia concentrations over time

Conclusion

- Airlift modifications did not significantly increase remediation rates of landfill permeate
 - Possibly because of small turbulences
 - Possible that other factors are limiting algae remediation

Possible Future Research

- Remediation using nitrogen starved algae
- Operating the algal remediation system based on culture density
- Increasing light intensity, changing photoperiod
- Increasing mixing rate
- Changing diameter of riser column

Questions?

