

Outline

- The Wind Resource
- Turbine Design
- US Wind Industry
- Wind Farm Development
- The Future

The Wind Resource

Opportunity Assessment: ND Wind-H₂

North Dakota: The "Saudi Arabia" of Wind

- ♣ Enough wind potential to supply 1/3 of the electricity consumption of the lower 48 states.
- ♣ No major load centers need to transmit power to remote locations
- ♣ Potential to become an clean fuel supplier to Minneapolis & Chicago:

Electricity (through power transmission lines)

Hydrogen (through pipelines)

Wind Resources & Infrastructure Challenges

Power in the Wind

Power = Work / t

= Kinetic Energy / t

d/t = V

 $= \frac{1}{2} mV^2 / t$

 $= \frac{1}{2} (\rho Ad) V^2/t$

 $= \frac{1}{2}\rho AV^2(d/t)$

 $= \frac{1}{2}\rho AV^3$

Power in the Wind = $\frac{1}{2}\rho AV^3$

Maximum Power

Power in the Wind = $\frac{1}{2}\rho AV^3$

- Swept Area $A = \pi R^2$ (m²) Area of the circle swept by the rotor.
- Power from a Wind Turbine Rotor
 C_p½ρΑV³
- Betz limit (air can not be slowed to zero) C_p < 59%
- Generator Losses

Turbine Design

Sizes and Applications

Small (≤10 kW)

- Homes
- Farms
- Remote Applications

(e.g. water pumping, telecom sites, icemaking)

Intermediate (10-250 kW)

- Village Power
- Hybrid Systems
- Distributed Power

Large (250 kW - 2+MW)

- Central Station Wind Farms
- Distributed Power

Small Wind Turbines are Different

- Large Turbines (600-1800 kW)
 - Installed in Windfarms, 10 100 MW
 - Provide Low Cost Power to the Grid
 - \$1,000/kW
 - Require 6 m/s (13 mph) Average Wind
- Small Turbines (0.3-50 kW)
 - Installed Off-Grid or at On-Grid Facilities
 - \$2,000-6,000/kW
 - Designed for Reliability / Low Maintenance
 - Require 4 m/s (9 mph) Average

NREL THE EVOLUTION OF COMMERCIAL U.S. WIND TECHNOLOGY

HOW A TURBINE CHANGES WIND ENERGY TO ELECTRICITY

N.E.G MICON: Nacelle & Hub Cross Section

Energy Production Terms

- Power in the Wind = 1/2pAV³
- <u>Betz Limit</u> 59% Max
- Power Coefficient C_p
- <u>Rated Power</u> Maximum power generator can produce.
- <u>Capacity factor</u>
 - Actual energy/maximum energy
- <u>Cut-in</u> wind speed where energy production begins
- <u>Cut-out</u> wind speed where energy production ends.

Typical Power Curve

US Wind Industry

Growth of Wind Energy Capacity Worldwide

Sources: BTM Consult Aps, March 2001
Windpower Monthly, January 2002

Wind Cost of Energy

Wind Farm Development: Driving Factors

- Wind Resource
- Proximity to Transmission
 Lines/Substations with excess
 capacity
- State Policy Provisions
 - property/sales tax,
 - permitting and review,
 - subsidies and incentives
 - renewable power purchase mandates
- Utility green power programs and customer demand
- Federal Policy
 - renewal of production tax credit
 - potential purchase mandates

Why Worth County IA - About the best Non-Firm Transmission available

Mandated Market Demand

Payback

Economic Development Opportunities

- Land Lease Payments: 2-3% of gross revenue \$2500-4000/MW/year
- Local property tax revenue: 100 MW brings in on the order of \$1 million/yr
- 1-2 jobs/MW during construction
- 2-5 permanent O&M jobs per 50-100 MW,
- Local construction and service industry: concrete, towers usually done locally
- Investment as Equity Owners: production tax credit, accelerated depreciation
- Manufacturing and Assembly plants expanding in U.S. (Micon in IL, LM Glasfiber in ND)

Wind Farm Development

Development Process:

- Site prospecting
 - Simultaneously taking first cut at everything
- Land rights (leases, easements)
- Site investigation
 - Wind measurement, analysis (2 years unless strongly correlations)
 - Environmental study
 - Sound, avian, viewshed, other issues (lightning, erosion, other flora, fauna)
 - Cultural issues (artifacts, land use, religious concerns, historic structures)
 - Geotechnical
- Permitting
- PPA negotiation
- Engineering
- Financing
- Construction and Operation

Project Development Cycle

BUILDING A WIND FARM Build Accesses & Dig Foundation Holes

BUILDING A WIND FARM Bury Underground Cable & Build Substation

BUILDING A WIND FARM Install Foundations

BUILDING A WIND FARM Deliver Turbines

BUILDING A WIND FARM Install First Section

BUILDING A WIND FARM Install Second Section

BUILDING A WIND FARM Install Third Section & Nacelle

BUILDING A WIND FARM Install Rotor

BUILDING A WIND FARM Install Rotor

The Future

With an eye for Florida

The Iowa Stored Energy Plant (ISEP)

- 3 Proven Technologies
- 1. Renewable wind energy
- 2. Aquifer storage of gas
- 3. Combustion turbine

3. Combustion turbine (simple cycle)

The Alabama CAES plant

Alabama Electric Cooperative

McIntosh Power Plant

Aerial View

Wind-Hydrogen System Concept

Wind-Hydrogen Forms a Green Energy Cycle and is Technically Feasible

Offshore Wind - Onshore H₂ Production (Long Island)

*NOTE: Assuming trucks are powered by H*₂