Food and Fuel: Turning Food Waste to Biogas

Ryan Graunke

The problem

Global climate change Decline in fossil fuels Unsustainable waste disposal Using biofuels from energy crops inflates food prices and increases deforestation Ex. Soybeans in Brazil

One solution: Biogas

Gaseous by-product from anaerobic digestion of organic material Driven by bacteria Relatively fast process Sustainable alternative to natural gas

Importance of microbes

Four classes of bacteria:
Hydrolytic
Acidogenic
Acetagenic
Methanogenic

Each class needed for biogas production

The biogas process

Experimental-sized digesters, Gainesville, FL

"Bag digester", Costa Rica

Small scale digester, rural India

Covered Lagoon, Tulare, CA

Corn sillage digester, Neumunster, Germany

Lübek mechanical biological treatment plant, Germany

Mechanical biological treatment plant, Tel Aviv, Israel

Reading Sewage Treatment Works, Reading, United Kingdom

Appleton Wastewater Treatment Plant, Appleton, Wisconsin

Benefits of biogas

Can produce energy from almost any type of organic waste
Carbon neutral
Not reliant on energy crops
Effluent used as an organic fertilizer
Can be scaled large or small

Benefits of biogas

Possible uses of biogas

Cooking
Heating water/air
Gas lighting
Electricity generation
Transportation
Hydrogen fuel cells

Why food waste?

96 billion pounds/year in the US or
12% of the municipal waste stream
Highly visible in community
Relatively untapped market
Avoids problems with energy crops

Why food waste?

Closed-loop system

Cook

food

Grow Crops

> Combust Biogas

Collect Effluent Digest food waste

Collect food waste

Collect biogas

Sources of food waste

Restaurants
Grocery stores
Food processing plants
Home kitchens

Case study: Broward Dining Hall

One of two on-campus dining halls
Almost 2,000 customers per day
Two waste streams
Plate Scraps – wastewater plant
Prep Waste - landfill

Problems with current waste disposal

Landfilling - Prep Waste

• Transportation energy

• Methane to atmosphere

• Land requirement

• Aesthetics

• Lock-up nutrients

Sewage treatment - Plate Scraps

• Requires water for flushing

• Energy wasted on cooking

• Energy demand at treatment plant

• Loss of nutrients in biosolids

• Transportation of biosolids

Current open-loop system

Method

Waste audit conducted Food waste ground with paint mixer and blended Digester fed ~1 lb. per day Gas production, pH, and temp. read daily

Results

~600 lbs of food waste per day Could produce about 1500 ft³ of biogas per day or 900 ft³ natural gas equivalent Supplement cooking fuel Low hydrogen sulfide No need for clean-up

Proposed closed-loop "eco-dining"

Benefits to Dining Service

Reduced landfilling costs Reduced energy costs Improved public image In-line with University's sustainability goals Pilot for biogas reactors at other dining halls

Benefits to the University

Help meet zero waste goals
Reduced demand on sewage treatment plant
Reduced hauling costs of biosolids
Improved public image
Meet sustainability goals

Benefits to Community

Benefits from spread of biogas technology
Reduced carbon emissions
Reduced negative consequences of current disposal system
Effluent as an organic fertilizer

Conclusions

Sustainable, closed-loop energy production and waste disposal One of many technologies for a sustainable energy future

Questions?

