THE CHEMISTRY OF BIODIESEL

ORGANIC CHEMISTRY

- Organic chemistry is the chemistry of the element carbon.
- Carbon atoms have a great flexibility in bonding with themselves and other atoms
- Around 90% of all known compounds are organic compounds
- There are close to 10 million organic compounds

Common Elements in Organic Chemistry

Table 3. Some elements of importance to organic chemistry.

Name	Symbol	Atomic Number	Atomic Weight
Carbon	С	6	12.011
Hydrogen	H	1	1.008
Nitrogen	N	7	14.007
Oxygen	0	8	15.9994
Phosphorus	P	15	30.974
Sulfur	S	16	32.06

Important Families of Organic Compounds in relation to biodiesel

- Alcohols
 - Methanol
 - Ethanol
- Carboxylic acids
 - Free fatty acids
- Lipids
 - Triglycerols
 - Glycerophospholipids
 - Waxes
- Esters
 - Methyl esters
 - Ethyl esters

Alcohols

- There are many different types of alcohols
- The common feature present in all alcohols is an -OH, or hydroxyl, functional group
- This functional group often dictates the behavior and reactivity of the organic molecule

Carboxylic acids

An organic compound containing the —COOH, or carboxyl functional group

Carboxylic Acid (R is a carbon chain)

O
$$\parallel$$
 O HO - C - (CH₂)₇ CH=CH(CH₂)₇CH₃ \parallel CH₃-C-OH Oleic Acid Acetic acid

Lipids

- Lipids come in a variety of molecular structures:
 - Triacylglycerols fats and oils
 - Phospholipids
 - Sphingolipids
 - Steroid hormones
 - Cholesterol

Triglycerols

- Triglycerols, or triglycerides, are the most prevalent type of storage lipid in plants and animals.
- They are also the most common biodiesel feedstock
- There are several different types of triglycerols
 - Saturated no C=C double bonds
 - Unsaturated one or more C=C double bonds
 - Hydrogenated or Trans fats –catalyzed, trans-saturated oils

Triacylglycerols

Saturated

Palmitic:
$$R = -(CH_2)_{14} - CH_3$$

16 carbons, (including the one that R is attached to.) (16:0)

Unsaturated

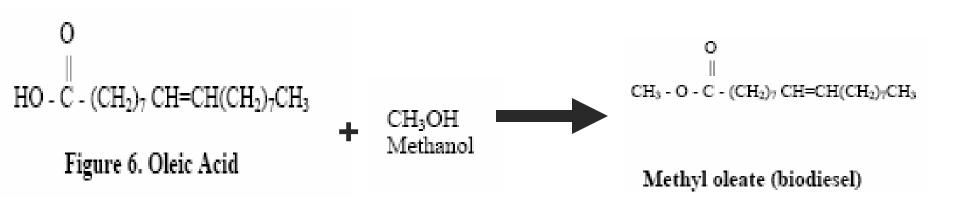
Monounsaturated

Oleic:

Polyunsaturated

Linoleic:

$$R = -(CH2)7 CH=CH-CH2-CH=CH(CH2)4CH3$$

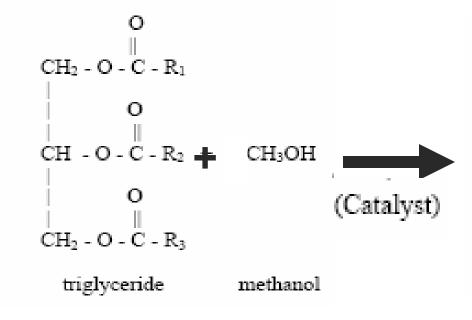

18 carbons, 2 double bonds (18:2)

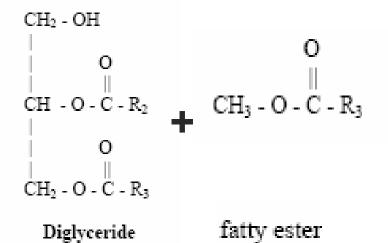
Esters

O || R₁-C-O-R₂

Ester

- Esters are formed by the reaction of an acid with an alcohol
 - This is known as an esterification reaction
 - The hydrolysis of an ester with a strong base is known as saponification, the process of making soap

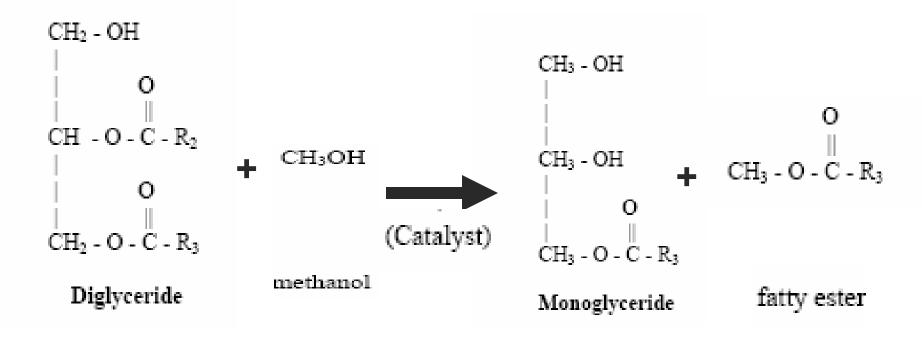

TRANSESTERIFICATION


a step-by-step visual guide

OIL + ALCOHOL = GLYCEROL + BIODIESEL

Step 1

LIPID

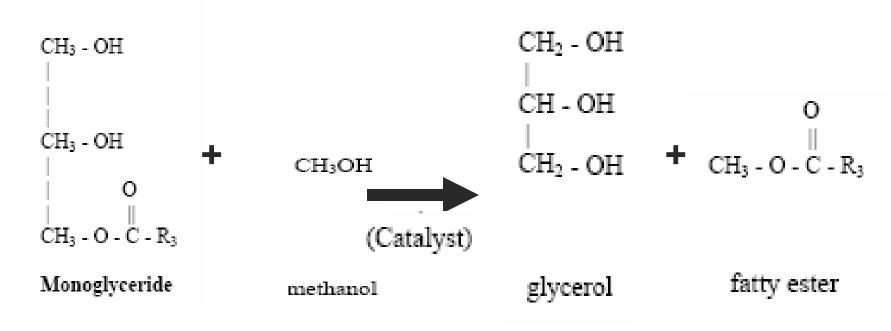

ALCOHOL

LIPID

BIODIESEL

Step 2:

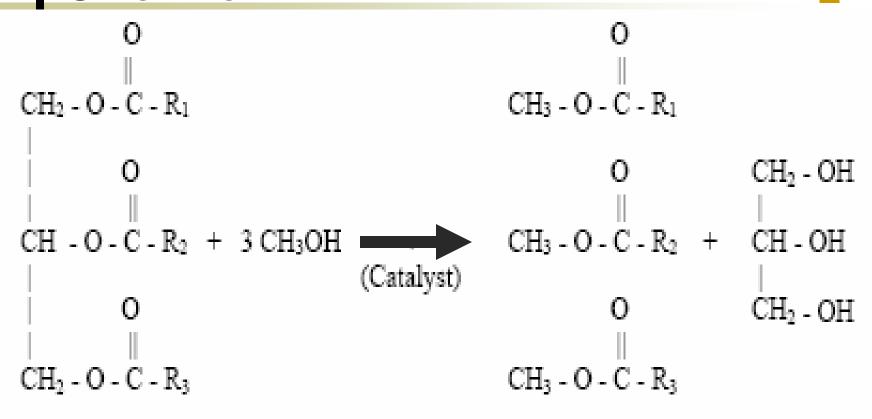
LIPID



LIPID

BIODIESEL

ALCOHOL


Step 3

LIPID

ALCOHOL GLYCEROL BIODIESEL

Overview

triglyceride

methanol

mixture of fatty esters

glycerol

ALCOHOL

BIODIESEL GLYCEROL