Impact of Various Artificial Substrata on Filamentous Algae Entrapment and Growth

Henry Legett 2012 BioEnergy and Sustainability School August 7, 2012

Introduction

- What is our current wastewater treatment method?
- Benefits of using algae for bioremediation.
- Benefits of using filamentous algae over microalgae.

The University of Florida Water Reclamation Facility (retrieved from http://www.ufwrf.com/)

Hypothesis

If filamentous algae can utilize a substratum to subsist and grow, then different types of substrata will foster varying amounts of algae entrapment and growth.

Objectives

- Construct a algae cultivation apparatus in which to entrap and grow filamentous algae, and to facilitate various algae cultivation experiments.
- 2. Test a wide array of possible substratum types.
- 3. Assess which substrata exhibit the greatest amount of algae entrapment and growth.

Algae growing apparatus

- 125 liter system, flow rate of 0.65 liters/sec
- Lights operate on a 12 hour cycle, 7:00-19:00
- Trials run on 5 day intervals
- Algae dried till constant mass.

- Initial polyculture inoculum:
 - 30g Cladophora sp., blended (from Northside park in Gainesville, FL)
 - 30g Pithophora sp., blended (from Northside park in Gainesville, FL)
 - 30g Rhizoclonium sp., blended
 (from the University of Florida
 Water Reclamation Facility)

• 50% N-8 medium

<u>Macronutrient</u>	<u>Needed</u>	<u>Used</u>	<u>Substitute</u>
KNO ₃	500 (mg/L)	62.5g	
KH ₂ PO ₄	370 (mg/L)	46.25g	
Na ₂ HPO ₄ •2H ₂ O	130 (mg/L)	16.25g	
$CaCl_2 \bullet 2H_2O$	6.5 (mg/L)	0.8125g	
Fe EDTA	5 (mg/L)	0.625g	Na EDTA
MgSO ₄ •7H ₂ O	25 (mg/L)	3.125g	
Micronutrients	0.5 (mL/L)	62.5mL	
<u>Micronutrients</u>			
Al ₂ (SO ₄) ₃ •18H ₂ O	1.79 (g/L)	0.111g	
MnCl ₂ •4H ₂ O	6.49 (g/L)	0.406g	
CuSO ₄ •5H ₂ O	0.915 (g/L)	0.0572g	
ZnSO ₄ •7H ₂ O	1.6 (g/L)	0.1g	

System parameters:

- pH: 6.41 6.70
- Conductivity: 3.92 4.19 mS/cm
- Irradiance: 58 71 μmol photons m⁻² s⁻¹

Materials/Methods: Substrata

- Plastic Liner (2mil.)
- Fiberglass mesh (1mm×1mm)
- Aluminum mesh (1mm×1mm)
- Polypropylene weed cloth
- 'Aluminet' Mylar
- Galvanized steel mesh (1.5cm ×1.5cm)
- Cotton fiber cheesecloth
- Polyfiber foam (3.81 cm depth)

Results

Final wet and dry algal mass per substrate

Results

Final wet algal mass per substrate

Results

Final dry algal mass per substrate

Plastic Liner (2 mil.)

Fiberglass mesh (1mm×1mm)

Aluminum mesh (1mm×1mm)

Polypropylene weedcloth

Aluminet Mylar

Galvanized steel mesh (1.5cm×1.5cm)

Cotton fiber cheesecloth

Polyfiber foam

Rhizoclonium sp. growth after 5 days 300X magnification

Cladophora sp. and *Fragilaria sp.* 300X magnification

Fragilaria sp. 1250X magnification

Conclusion

Unsuccessful substratum:

- Plastic Liner
- Polypropylene weed cloth
- Cotton fiber cheesecloth*
- Galvanized steel mesh

Conclusion

Successful substratum:

- Fiberglass mesh
- Aluminum mesh
- Aluminet Mylar
- Cotton fiber cheesecloth*
 - Possible cellulose degradation
 - Possible advantages in application
- Polyfiber foam
 - Possible harvesting disadvantages

Further Research

- Methods and apparatus shown to be successful.
- Using the same procedures:

 Further idealize substratum based on surface area and specific material type.

Further Research

- Long-term bioremedial study:
 - Month long time period
 - Using the same system and same N-8 medium.
 - Track long-term algae growth over time.
 - Track nutrient reduction in the water over time.