Waste Activated Sludge as a Feedstock and Inoculum for Anaerobic Digestion

Candice Prince 2012 BioEnergy and Sustainability School August 7, 2012

Introduction: Waste Activated Sludge (WAS)

 WAS: Excess biosolids produced in the activated sludge process of waste water treatment

The Problem

- WAS management accounts for 60% of the total operating cost
- Current disposal methods:
 - Land application
 - Landfill
 - Incineration
 - Anaerobic Digestion

Waste Water Treatment at UF

- The University of Florida treats its own wastewater
 - 3 million 5 million gallons/day
- WAS picked up once a week by GRU
 - Treated and land applied

Anaerobic Digestion

Anaerobic Digestion of WAS

WAS is composed of Gram
Negative bacterial cells

- Thin layer of peptidoglycan covered by outer membrane
- Limits hydrolysis
- Pretreatment required to release soluble, digestible contents

WAS as an inoculum

- Waste water treatment: anaerobic and aerobic conditions
- Methanogens: anaerobic conditions
- If methanogens are present, WAS could inoculate itself
- Eliminate need for external inoculum → lower operating cost

- Test pretreatment methods of WAS and compare levels of cell destruction
- Determine the potential of using WAS as an inoculum for anaerobic digestion

Objective One

Pretreatment of WAS

Methods

- Samples collected from the University of Florida Waste Water Treatment Plant
- 5 pretreatments performed in triplicate:
 - Microwave (30 seconds at 1500 W)
 - Autoclave (30 minutes)
 - Bead Shaker (5 minutes)
 - Frozen (24 hours, 20°C)
 - Incubator at 55°C (24 hours)

Methods

- Total Chemical Oxygen Demand (COD_T) measured
 - Samples (triplicate) diluted 1:10 with deionized water
- Soluble Chemical Oxygen Demand (CODs) measured
 - Centrifuged at 4,000 rpm for 30 minutes, supernatant tested
- Microscopic examination for fractured cells

CODT

CODs 1600 1400 1200 **CODs (mg/L)** 800 600 T 400 200 0 Control Autoclave 55° C **Bead Shaker** Frozen M.W

Control (Untreated WAS)

Intact cells under phase contrast illumination

Pretreatment: Autoclave for 30 minutes

Pretreatment: 55°C for 24 hours

Pretreatment: Frozen for 24 hours

Pretreatment: Microwaved for 30 seconds (1500 W)

Pretreatment: Bead Shaker for 5 minutes

Objective Two

WAS as an Inoculum

Methods

- Incubation Test:
 - WAS and Dairy Manure used to digest glucose and cellulose
 - Incubated at 35°C for 16 days
 - Biochemical Methane Potential (BMP) assays measured

Inocula	Substrate
WAS (200 mL)	Glucose (0.4 g)
	Cellulose (0.4 g)
Dairy Manure (200 mL)	Glucose (0.4 g)
	Cellulose (0.4 g)

Methods

- pH measured after incubation test
- A fluorospectrometer (Nanodrop 3300) was used for methanogen detection before and after incubation test
 - Methanogens fluoresce blue (F420 Coenzyme)
 - 2yL of sample exposed to UV light and fluorescence recorded at 470nm

Methane Production from Glucose

Methane Production from Cellulose

Average pH of Samples

Post-Incubation Fluorescence

Conclusions

- WAS Pretreatment:
 - Cell lysis achieved under pretreatments
 - The autoclave was the best form of pretreatment, followed by heating at 55°C
- WAS as an inoculum:
 - Not as effective as the control
 - Became rapidly too acidic

Future Studies

- WAS Pretreatment:
 - Optimization of pretreatment techniques
 - Comparison of energy requirements for each pretreatment
- WAS as an Inoculum
 - Determine optimal loading rate
 - Full scale testing using pretreated W.A.S. as a feedstock

Thank you!

Any questions?

