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1. Introduction

Stillage, also termed distillery wastewater,
distillery pot ale, distillery slops, distillery
spent wash, dunder, mosto, vinasse, and thin
stillage, is the aqueous by-product from the
distillation of ethanol following fermentation of
carbohydrates. The production of ethanol from
biomass, whether from sugar crops (sugar
beets, sugar cane, molasses, etc.), starch crops
(corn, wheat, rice, cassava, etc.), dairy pro-
ducts (whey) or cellulosic materials (crop resi-

dues, herbaceous energy crops, bagasse, wood,
or municipal solid waste), results in the con-
current production of stillage which exhibits a
considerable pollution potential [1,2]. Up to 20
liters of stillage may be generated for each
liter of ethanol produced [3] and the pollution
potential of stillage can exceed a chemical oxy-
gen demand (COD) of 100 g/L [4]. A med-
ium-sized ethanol facility producing 106 L
ethanol/yr generates stillage with a pollution level
equivalent to the sewage of a city with a popu-
lation of 500,000 [5].
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While large-scale ethanol production from
sugar-based and starch-based crops has a con-
siderable history, large-scale ethanol production
from lignocellulosic biomass has been limited.
However, e�orts are underway to improve pro-
cess economics and to bring cellulosics-to-ethanol
conversion into production [6±19]. In contrast to
sugar- and starch-based crops, the availability of
signi®cant resources of lignocellulosic biomass
means that large-scale production of ethanol
from lignocellulosic biomass has the potential to
replace a major portion of imported liquid fuels
[13]. Also, when conversion e�ciencies are high,
the production and use of fuel ethanol from all
biomass sources can reduce greenhouse emissions
of CO2 which would otherwise result from the
use of fossil fuels. However, for the production
of ethanol to qualify as a sustainable ``green
energy'' process, due consideration for treatment
and utilization of the stillage by-product is essen-
tial.

An extensive review of the scienti®c literature
was conducted to investigate methods to process
and utilize the signi®cant by-product streams as-
sociated with ethanol production from conven-
tional and cellulosic feedstocks. A preliminary
analysis of ethanol-production wastewater
characteristics and treatment revealed a consen-
sus toward anaerobic digestion as an economi-
cally viable and sustainable by-product recovery
scheme. Therefore, much of this e�ort focused
on examining those aspects of biomass-to-ethanol
conversion and e�uent characteristics which are
expected to impact the technical feasibility of an-
aerobic treatment. To the extent practicable, an
attempt was made to assess the roles of feed-
stock, hydrolysis method, in-plant recycling, mi-
crobial toxicity, by-product recovery (feed and
nutrients), reactor type, biogas yield, phytotoxi-
city and sustainability, in by-product treatment
and utilization options.

2. Feedstocks for ethanol production

Conventional feedstocks for the production of
ethanol include both sugar-based and starch-
based feedstocks, as well as whey from the dairy

products industry. The sugar-based feedstocks
include crops such as sugar beets and sugar cane,
as well as fruit crops such as grapes, and are the
most easily fermentable feedstocks. Fresh juices
from beets and cane contain reducing sugars
which are available to yeast with no pretreatment
of the feedstock, other than size reduction and
pressing. However, the relatively high market
value of sugar has limited implementation of
direct conversion to ethanol and, instead, ethanol
is often a by-product of sugar production
through the fermentation of molasses, also called
blackstrap molasses, left over from concentration
and precipitation of sugar from the juice [20].

There are several grades of blackstrap molasses
depending on the sugar content, ash content, and
color. Whereas blackstrap molasses is a by-pro-
duct of sugar crystallization, high test molasses is
a concentration of the virgin juice normally
intended for use in food products [21]. High test
molasses is often acidi®ed to prevent crystalliza-
tion of sugars during storage. Unless otherwise
stated, we will use the term molasses to mean
blackstrap molasses.

Beet molasses and cane molasses are the most
common sugar crop-based feedstocks for ethanol
production. One other sugar-based feedstock for
ethanol production is whey [22], an aqueous by-
product of cheese production that contains lac-
tose as the principal sugar. In addition, sweet
sorghum contains carbohydrates in fractions of
both sugar and starch, and may be considered a
sugar-based feedstock due to the sugar fraction.

Starch-based feedstocks include grains such as
corn, wheat, rice, barley, and milo (grain sor-
ghum), as well as root crops such as potatoes
and cassava. In addition to milling, the conver-
sion of starch-based feedstocks requires an enzy-
matic hydrolysis step, termed sacchari®cation, to
convert the starch to fermentable sugars [23].
Similar to the sugar industry, ethanol can also be
produced as a by-product of large wet-milling
operations which recover oils, proteins and glu-
ten from grains for food and feed additives, and
use the remaining puri®ed starches to produce
ethanol [23].

Cellulosic feedstocks for ethanol production
include both herbaceous (e.g., grasses) and
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woody (softwoods and hardwoods) biomass, as
well as industrial wastes (e.g., bagasse, rice hulls,
and paper mill sludge) and municipal solid
wastes (MSW) of organic origins. The organic
fraction of MSW containing waste paper may be
a suitable feedstock, as well as refuse derived fuel
(RDF), which is a MSW fraction containing
mostly paper and plastics. Cellulosic feedstocks
typically contain a substantial amount of hemi-
cellulose and lignin, which are bound up in the
lignocellulose complex making up the plant
®bers. These feedstocks require a more substan-
tial pretreatment to convert the cellulose to fer-
mentable sugars. After shredding, the cellulosic
biomass must undergo acid, alkaline, or enzy-
matic hydrolysis to produce fermentable sugars.
Since hemicellulose contains pentose sugars
which cannot be utilized by the standard ethanol-
producing yeast, Saccharomyces cerevisiae, novel
organisms must be employed if utilization of
these pentoses is desired [24].

3. Ethanol production processes

A successful ethanol production and conver-
sion system that is both economically and envir-
onmentally sustainable requires the application
of a host of component technologies in a holistic
and integrated manner, such that economic risk
for the investment is minimized. Fig. 1 displays
one schematic representation of an ethanol pro-
duction system which is classi®ed into four
dependent component systems Ð production,
harvesting, storage, and conversion. This study
concerns mainly the conversion process. How-
ever, conversion may be linked to the production
system through the possibility of recovering and
utilizing conversion by-products to enhance pro-
duction e�ciency, while providing an economi-
cally viable and necessary outlet for by-products
which must leave the conversion facility. If the
primary output of such a system is the pro-
duction of liquid fuel ethanol, which leaves the
facility in an almost pure state, then every other
material input to the conversion facility besides
the carbon precursor will eventually require some
means of ®nal disposition. Optimal sustainability

will occur when each by-product generates maxi-
mum value and minimum environmental impact.

Not all of the inputs and losses for the com-
ponent systems can be completely controlled
through process design, although the goal is to
minimize the cost of both controllable inputs and
losses. For the conversion facility, while minimiz-
ing inputs is bene®cial for economical ethanol
production, there is also a signi®cant incentive to
minimize the wasting of ``necessary'' by-product
outputs through treatment and conversion that
permits their most valuable utilization.

A more detailed schematic of the unit process
steps required to produce ethanol within the con-
version facility is depicted in Fig. 2. While some
di�erences exist in the processing of sugar, starch
and lignocellulosic feedstocks, many aspects of
the ethanol production process remain the same
and detailed descriptions can be found elsewhere
[25]. Since the total quantity (mass and volume)
of the ``whole'' stillage leaving the distillation col-
umn is an order of magnitude larger than any of
the other unit process ``losses'', the focus for
minimizing waste at the conversion facility
should target by-product recovery from this
wastestream. However, since each of the preced-
ing unit processes has a signi®cant impact on the
quantity and quality of this stillage wastewater
stream, optimal utilization of stillage requires an
understanding of how hydrolysis, fermentation
and distillation a�ect the stillage by-product.

4. Pretreatment and hydrolysis

The e�ect of pretreatment process on stillage
characteristics has not been documented. Pre-
treatment of a feedstock may include mechanical
processes (milling and shredding), steam ex-
plosion [26,27], steam explosion in the presence
of acid [28,29], super-critical explosion by carbon
dioxide [30], ammonia freeze explosion (AFEX),
solvent deligni®cation (using ethanol, butanol, or
acetic acid), and thermal±mechanical processes
[18,31]. All of these processes serve to improve
access to the substrate for further hydrolytic
steps. In the AFEX process [32], the substrate is
exposed to ammonia at elevated pressures and
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¯ashed back to atmospheric pressure to open the
cellulose ®bers in order to improve enzymatic
hydrolysis of the cellulose to fermentable sugars.
Much of the ammonia can be recycled except for
a fraction remaining on the ®bers. Where pre-
treatments are e�ected to separate components of
the biomass (e.g., bark or pith), it is plausible
that such treatments will a�ect the composition
of the fermentation media as well as the ®nal stil-
lage product.

As stated previously, sugar-based feedstocks
do not require processing to convert carbo-
hydrates into fermentable sugars. In starch-based
feedstocks, a mashing and sacchari®cation pro-
cess is required to produce fermentable sugars
[33]. After milling, the starch-based feedstocks
are introduced into a cooker, with make-up
water and a-amylase, and heated to 908C. In this
liquefaction process, a-amylase is employed to
cleave long starch polymers to dextran. Alpha-
amylase requires Ca++ for activation and has an
optimal pH of 6.6. This is generally achieved by
the addition of lime as the Ca++ source and
additional alkali (usually NaOH) as required to
reach the optimal pH, since the pH of most
grain-mash is below this optimum. After lique-
faction, the mash is cooled to below 608C and
gluco-amylase is added while the pH is lowered
to the optimal value of 4.5 for this enzyme [25].
The gluco-amylase enzymes attack the ends of
dextran and produce fermentable sugars. At this
stage, nitrogen and phosphorous nutrients may
be added where the nutrient content of feed-
stocks is expected to limit fermentation.

Since the pH optima of these two enzymes are
di�erent, the salinity of the mash and the ®nal
stillage is increased by the salts which are formed
as a result of these pH adjustments. The compo-
sition of these salts is dependent on the acids and
bases employed. The introduction of alkali and
acid during mashing and sacchari®cation is an
important step for optimization and should
receive careful consideration [33]. Minimizing the
addition of alkali during mashing will lessen the
requirement for acid during sacchari®cation,
leading to lower chemical consumption and a
lower salinity of ®nal e�uent stillage. However,
if the time period and pH achieved are insu�-

cient in either step, the presence of unfermentable
sugars may increase the COD of the ®nal stillage
and thereby impact stillage treatment require-
ments.

Hydrolysis of cellulosic feedstocks is accom-
plished through either enzymatic, concentrated
acid [34], or dilute acid hydrolysis, or combi-
nations thereof [9]. In enzymatic hydrolysis,
extracts of cellulase enzymes obtained from
cellulolytic organisms, such as Trichoderma ree-
sei, are added to the feedstock, often along
with b-glucosidase, to allow conversion of the
cellulose to cellobiose and then to individual
glucose units [35]. While enzymatic hydrolysis
is considered expensive compared to acid hy-
drolysis, due to the cost of enzymes and the
longer time required (days rather than min-
utes), it possesses the advantage that side reac-
tions which convert some of the carbohydrates
in cellulosic feedstocks to non-fermentable
sugars are virtually absent.

In acid hydrolysis, the cellulosic feedstock is
exposed to concentrated or dilute acids (usually
H2SO4) at elevated temperatures and pressures
for speci®c time periods to free the hemicellulose
and lignin from the cellulose ®bers and to hydro-
lyze the cellulose to glucose [36]. Acid hydrolysis
may employ concentrated acids for short periods
of exposure or dilute acids for longer periods
[37]. A common scheme is to employ a two-stage
dilute acid hydrolysis, where the hemicellulose is
hydrolyzed to xylose and recovered in the ®rst
stage and a more vigorous second-stage hydroly-
sis is employed for conversion of cellulose to glu-
cose [38]. The two streams may be combined or
fermented separately [39]. A consequence of acid
hydrolysis is the potential loss of glucose to
hydroxymethyl furfural and xylose to furfural in
side reactions [18]. In combinational hydrolysis
processes, dilute acid hydrolysis or AFEX may
be followed by enzymatic treatment to enhance
the e�ect of costly enzyme additions [40]. More
complete descriptions of these processes can be
found elsewhere [9].

Finally, lignin solids remaining after hydrolysis
may cause problems in fermentation when recy-
cling of yeast is desirable. Alkaline (NaOH) or
oxidant (H2O2) treatments may be employed in
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pretreatments to render the lignin to soluble
forms [18]. Also, resinous acids and lignin degra-
dation products resulting from acid hydrolysis
may be inhibitory to fermentation [41,42], and
over-liming prior to fermentation may be
employed for detoxi®cation of the mash [36]. The
e�ect of hydrolysis method on stillage character-
istics is not documented in the literature.

5. Fermentation

The fermentation process is normally operated
as a batch, but the process may also be continu-
ous or partially continuous [43]. In a convention-
al batch process, an inoculum of yeast culture
often close to 10% of the fermenter volume is
added to the cooled mash and allowed to ferment
to completion, usually in less than 2 days [25].
The volume of stillage which results after distilla-
tion is inversely proportional to the concen-
tration of ethanol at the end of the fermentation.
Therefore, e�orts to assure high ethanol content
of the ®nal beer will reduce stillage volume and
improve distillation energy consumption and ca-
pacity [44]. Also, ensuring that fermentation has
reached completion and that residual sugars in
the beer are minimized can lower the COD of the
resulting stillage. For every 1% of residual sugar
(based on glucose), a stillage COD increment of
16 g/L can be expected.

Continuous fermentation with immobilized
yeast [45] or recycled yeast [46] is advocated for
potentially higher fermenter productivity and
ethanol yield, mostly due to a decreased yield of
yeast organisms. Any increase in ethanol yield
should lower the organic strength of the ®nal stil-
lage, but this may depend on the ®nal disposition
of the product yeast. Where yeast is not recov-
ered, continuous fermentation should lower stil-
lage COD, since yeast yield is less than for batch
fermentation. Conversely, where yeast is recov-
ered for use in feed products, the impact of con-
tinuous fermentation on stillage COD can be
expected to be minimal, since the lesser amount
of yeast is removed from the stillage. However,
continuous fermentation increases the suscepti-
bility to contamination by microorganisms which

produce fermentation products other than etha-
nol, most of which will remain in the stillage and
increase stillage COD.

In a partially continuous fermentation, yeast
may be partially recovered from the beer prior to
distillation and returned to fermentation. The
volume of stillage is reduced by the volume of
returned yeast [47], but the soluble COD
entrained with the yeast increases the COD of
the stillage. In a similar manner, when properly
used, back-set or stillage recycling (the use of stil-
lage as make-up water for cooking and fermenta-
tion) will lower stillage volume [48] but not a�ect
the total amount of COD produced since the stil-
lage strength will be increased by the amount of
back-set [49]. An analysis of beet molasses distil-
leries showed that the use of 30% back-set
reduced stillage production from 15.9 to 12.6 L/L
ethanol [50]. The use of back-set can reduce con-
sumption of water, steam, and some chemicals,
but the accumulation of fermentation products
and non-fermentable sugars can inhibit the fer-
mentation process. Therefore, a practical limit of
50% stillage recycling is considered a maximum
[25,44,47,48,51±53]. Above this level of stillage
recycling, inhibition of the yeast will lower etha-
nol yield and increase the COD concentration in
the stillage beyond that contributed by the re-
cycled stillage alone.

Several di�erent organisms have been proposed
for use in fermenting sugars to ethanol, with
di�erent strains of the yeast, Saccharomyces cere-
visiae, being the most widely used due to its
robust growth rate and high ethanol tolerance
[54]. With proper nutrient and growth conditions,
it has been shown that S. cerevisiae can tolerate
ethanol concentrations up to 23% [54]. There is
an interest in the use of thermotolerant yeast in
thermophilic ethanol production [55,56], due to
the potential for higher fermentation rates and
ethanol yields, and the reduced requirements for
cooling. Yet, to date, thermophilic fermenting
organisms have su�ered from low ethanol toler-
ance, presumably due to leaky cell membranes at
the higher temperatures [56].

The bacterium, Zymomonas mobilis, has been
shown to produce higher ethanol yields due to a
lower cell yield, but its lower ethanol tolerance
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and lower feed by-product return has limited its
widespread application [57]. Di�culty of separ-
ation, lower cell yield, and concern for patho-
genic contamination in feed have limited the
market for bacterial feed additives. In contrast,
yeast are more easily separated, generally
accepted as safe in feeds, and have an established
market [58].

Since S. cerevisiae poorly ferments lactose,
Kluyveromyces marxianus is often employed for
fermentation of whey feedstocks [59]. For cellulo-
sic feedstocks containing pentose sugars which
are not fermentable by S. cerevisiae, the impact
of organism selection on stillage COD could be
signi®cant since the pentose sugars can amount
to 25% of the feedstock carbohydrates [60,61].
Genetically engineered Escherichia coli, Zymomo-
nas, and yeast with extended substrate capabili-
ties can utilize both 5-carbon and 6-carbon
sugars to produce ethanol [24,62±65]. A signi®-
cant decrease in stillage COD could be expected
from utilizing pentose sugars in the fermentation
of cellulosic feedstocks, but this has not been
documented.

For cellulosic feedstocks employing enzymatic
hydrolysis, sacchari®cation may be aided by the
addition of b-glucosidase to the mash to cleave
the glucose dimer, cellobiose. Since the activity of
b-glucosidase is inhibited by the presence of glu-
cose, the use of sacchari®cation during fermenta-
tion, called simultaneous sacchari®cation and
fermentation (SSF), is advocated since the fer-
menting organisms will lower inhibiting glucose
concentrations [19,66]. Also, since higher ethanol
yields have been achieved using SSF, the result-
ing stillage should have a lower organic content,
although this has not been documented. A simple
modi®cation to SSF which was shown to be
e�ective is the periodic application of ultrasound
to the fermentation to enhance enzyme contact
with the substrate [67].

6. Distillation and dehydration

After fermentation is complete, the beer con-
taining typically 2±12% ethanol is pumped to a
continuous distillation process where steam is

used to heat the beer to its boiling point in the
stripper column [25]. The ethanol-enriched
vapors pass through a rectifying column and are
condensed and removed from the top of the rec-
ti®er at around 95% ethanol. The ethanol-
stripped stillage falls to the bottom of the strip-
per column and is pumped to a stillage tank.
With e�cient distillation, the stillage should con-
tain less than 0.1±0.2% ethanol but, at times
when distillation is not optimal, the stillage may
contain a signi®cant ethanol content. For each
1% ethanol left in the stillage, the COD of the
stillage is incremented by more than 20 g/L. Due
to the potential impact of residual ethanol con-
tent, therefore, proper control over distillation
can greatly a�ect the COD of stillage.

The heating of stillage by steam can occur
either by direct injection of steam into the bot-
tom of the stripper column or indirectly through
a ``reboiler'' heat exchanger at the bottom of the
column [25]. Also true in the cooking process,
the direct injection of steam impacts the stillage
in two ways. First, the condensed steam adds to
the stillage volume and dilutes the contents. In
addition, loss of water from the boiler requires
the addition of make-up water and increases the
blow-down volume from the boiler required to
avoid boiler scaling. More boiler feed water use
and blow down increases the requirement for
boiler chemicals and increases the amount of
salts removed in the blow down [68]. Since the
blow-down water is normally combined with the
stillage, it dilutes the organic content of the stil-
lage and increases the salinity. An analysis at a
beet molasses distillery showed that stillage pro-
duction decreased from 15.9 to 12.7 L/L ethanol
when heating was switched from direct steam
injection to the use of a reboiler [50].

In order to allow the blending of alcohol with
gasoline, the water content must be reduced to
less than 1% by volume. Higher water levels can
result in the separation of an alcohol/water mix-
ture below the gasoline phase, which may cause
engine malfunction when a fuel tank empties.
Unfortunately, separation of ethanol from water
by distillation is limited to a purity of around
96% due to the azeotropic properties of ethanol/
water mixtures. The removal of the water beyond
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the last 5% is called dehydration or drying. Tra-
ditionally, azeotropic distillation was employed
to produce higher purity ethanol by adding a
third component, such as benzene, cyclohexane
or ether, to ``break'' the azeotrope and produce
dry ethanol [69]. To avoid the illegal transfer of
ethanol from the industrial market into the pota-
ble alcohol market, where it is highly regulated
and taxed, dry alcohol usually requires the ad-
dition of denaturing agents which render it toxic
for human consumption, and the azeotropic re-
agents conveniently met this requirement.

Except in the high purity reagent-grade ethanol
market, azeotropic drying has been supplanted
by molecular sieve drying technology, which is
not only more energy e�cient but also avoids the
occupational hazards associated with the azeotro-
pic chemical admixtures. In molecular sieve dry-
ing, the ethanol is passed through a bed of
synthetic zeolite with uniform pore sizes which
preferentially adsorb water molecules. After the
bed becomes saturated, it must be regenerated by
heating or evacuating the bed to drive o� the
adsorbed water. Either liquid or vaporous etha-
nol can be used, but the dominant and most e�-
cient technology is the vapor-phase ``pressure
swing'' adsorption molecular sieve process [69].
In this case, two molecular sieve beds are placed
in parallel with one drying while the other is
regenerating. During the regeneration phase a
``side stream'' of ethanol/water (often around
50%) is produced, which must be redistilled
before it can be returned to the drying process.
The ``bottoms'' from side stream distillation is
often blended into the stillage, adding to the stil-
lage volume.

7. Stillage production and characterization

The annual production of ethanol from var-
ious sugar- and starch-based feedstocks is sig-
ni®cant. Production of ethanol in Brazil was
16.2 billion liters in 1997 [70], with 79% pro-
duced from fresh sugarcane juice and the bal-
ance produced from molasses by-product. In
India, 250 distilleries were producing 1.5 bil-
lion liters of ethanol in 1995 [71] from sugar-

cane molasses, with at least 65% of the
ethanol used as chemical feedstock. In the US,
there were 57 facilities producing an estimated
6.9 billion liters of ethanol in 1999 [72]. Exist-
ing feedstocks may support some expansion of
production capacity, but signi®cant increases in
ethanol production will require the utilization
of cellulosic-based feedstocks. Since up to 20
liters of stillage may be generated for every
liter of ethanol produced, substantial increases
in ethanol production will also require e�ective
solutions for stillage management.

The production and characteristics of stillage
are highly variable and dependent on feed-
stocks and various aspects of the ethanol pro-
duction process. Wash water used to clean the
fermenters, cooling water blow down, and boi-
ler water blow down may all be combined
with the stillage and contribute to its variabil-
ity. However, while the volume and COD con-
centration of stillage may vary considerably,
the total amount of COD produced can be
expected to be more consistent with the
amounts of feedstock processed and ethanol
produced. Table 1 shows yields of ethanol,
stillage and COD on the basis of feedstock
mass processed and indicates the impact of
feedstock on COD produced. Feedstocks yield-
ing higher amounts of ethanol appear to also
produce higher amounts of stillage COD, but
do not correlate with the COD concentration.
Unfortunately, the number of studies which
examine stillage production in this manner are
limited.

Ignoring stillage production volumes, many
studies have examined the characteristics of stil-
lage in terms of its organic strength and nutrient
content for various ethanol-producing feedstocks,
as shown in Tables 2±6 for sugar beet molasses,
for sugarcane juice, for sugarcane molasses, for
some additional sugar and starch feedstocks, and
for cellulosic feedstocks, respectively. A summary
of the data from Tables 2, 3, 4, and 6 is pre-
sented in Table 7.

Upon analysis of these values, it is apparent
that cane molasses stillage exhibits the highest
levels of biochemical oxygen demand (BOD),
COD, COD/BOD ratio, potassium, phosphorous
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and sulfate, while cane juice stillage exhibits the
lowest levels of COD and BOD (Table 7). The
concentration of sugars in molasses, through
crystallization and evaporation of cane juice,
increases the content of non-fermentable organics
which remain in the stillage after fermentation,
augmenting the COD and increasing the COD/
BOD ratio. The high N-content of stillage from
barley fermentation (Table 5) stands out and is
presumably related to the high protein content in
the grain. This level of N is su�cient to produce
inhibitory levels of ammonia/ammonium in e�u-
ents from barley distilleries [73].

The high sulfate levels of molasses (Table 7)
are also noteworthy, and are a result of the type
of sul®ting process used in raw sugar production
[20]. There is also an instance of high-sulfate
cane juice stillage (Table 3) [74], which results
from production of direct consumption sugar
using a sul®tation process to produce a sugar
straight from boiled juice without a second melt-

ing and re®ning step [75]. Such high levels of sul-
fate can impact further treatment and disposition
of stillage.

Organic components of stillage have been stu-
died by several researchers [76±78]. The principal
low molecular weight components of cane mol-
asses stillage were found to be lactic acid, gly-
cerol, ethanol and acetic acid, while whey stillage
also contained lactose, glucose, arabinitol, and
ribitol [77]. Trace amounts of amino acids were
found in all stillages tested, with corn stillage
containing high levels of alanine and proline [77].
A comparison of barley- versus wheat-based stil-
lage found higher levels of most amino acids in
the crude protein of barley stillage but lower
levels of crude protein on a stillage dry matter
basis compared to wheat stillage [79]. Carbon-13
nuclear magnetic resonance and di�use re¯ec-
tance Fourier-transform infrared spectroscopy
studies of cane molasses stillage suggested the
presence of a fulvic acid (FA) component com-

Table 1

Stillage production from various feedstocks (values are calculated from data in literature sources)a

Feedstock Ethanol production

capacity 106L/yr

Ethanol yield

L/kg feedstock

Stillage yield

L/kg feedstock

BOD

(COD)

g/L

COD yield

kg/kg

feedstock

COD yield

kg/L EtOH

References

Beets fresh

and molasses

18.8 0.02 0.22 38 (65) 0.014 0.70 Holmes and Sane

[199]

Cane

molasses

nd 0.32 3.8 nd (nd) nd nd Chamarro [44]

Cane

molasses

50 0.21 2.52 45 (113) 0.28 1.33 Barnes and Halbert

[102]

Cane juice 24 0.067 1.33 12 (25) 0.03 0.45 van Haandel and

Catunda [3]

Corn 7±70 0.379 6.29 37 (56) 0.349 0.92 Loehr and

Sengupta [95]

RDF/CA

(dry wt

basis)

nd nd 5.5 37.7

(104)

0.572 nd Broder [200]

RDF/DA

(dry wt

basis)

nd nd 3.8 31.1

(110)

0.418 nd Broder [200]

Softwood

(Pinus

radiata )

nd 0.25 20.4 13.2

(25.5)

0.52 2.05 Callander et al. [1],

Mackie et al. [36]

Whey 2.0 0.012 0.02 5.4 (nd) nd nd Barry [201]

Whey nd 0.021 0.21 15 (nd) nd nd Singh et al. [202]

a nd=no data; CA=Concentrated acid; DA=Dilute acid; RDF=Refuse derived fuel.
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parable to FA extracted from soils and sewage
sludge, though exhibiting a higher C/N ratio [76].

Other important characteristics of stillage
include color, heavy metals content and the
presence of organic priority pollutants. Highly
colored e�uents can have negative environ-
mental impacts if released into surface waters,
where they may disrupt the growth of normal
aquatic ¯ora. Phenolics (tannic and humic
acids) from the feedstock [80], melanoidins
from Maillard reaction of sugars with proteins
[75], caramels from overheated sugars [75], and
furfurals from acid hydrolysis [81] can contrib-
ute to the color of the e�uent. In addition,
these compounds are known to be inhibitory
to fermentation, to rumen microbes [82,83], as
well as to biological treatment of the stillage
[84±86]. Also, melanoidins are known to be
mutagenic [87,88].

Heavy metals have been detected in e�uents
from ethanol production facilities [89]. Speci®-
cally, chromium, copper, nickel and zinc were
found at levels signi®cantly above detection
limits in e�uents from several ethanol facili-
ties. Also, high levels of copper (>150 mg/L)
have been found in stillage from cherry/rasp-
berry feedstocks due to the addition of CuSO4

to the mash to bind cyanide in order to meet
spirit standards [90]. While some heavy metals
may be introduced from the feedstock and
chemicals used, corrosion of piping, tanks, and
heat exchangers is expected and may contribute
to heavy metal levels in the e�uent. Processing
equipment used in acid hydrolysis is often made

of corrosion-resistant alloys [38] to withstand the
high temperature and acidic conditions of hy-
drolysis. Heavy metals contained in these alloys
may leach into the feedstock during hydrolysis,
resulting in detectable levels in the stillage. How-
ever, we found no studies addressing heavy metal
levels in hydrolysis stillage.

Organic priority pollutants, including chloro-
form, methylene chloride, pentachlorophenol,
and phenol, were found in wastewaters from at
least 2 of 13 ethanol production facilities sampled
[89], but no source for these compounds was
identi®ed. Since, in the US, large corn-processing
plants may only produce ethanol when the
demand for high-fructose corn syrup is low (in
the winter months), idled ethanol-dehydrating
equipment may be employed for drying other
industrial chemicals, including organic priority
pollutants [91]. Side streams from regenerating
the molecular sieves must be redistilled and the
chemical-based still bottoms is often combined
with ethanol stillage, introducing priority pollu-
tants into the stillage [91]. The presence of or-
ganic priority pollutants in stillage is atypical and
is not expected when separation processes are not
intermingled with other chemical processing.

Generally, the characteristics of stillage from
cellulosic materials appear comparable to those
of conventional feedstocks (Table 7) and, there-
fore, methods of stillage treatment and utilization
applied to conventional feedstocks should also be
applicable to cellulosic feedstocks. Two possible
exceptions to the similarity of cellulosic and con-
ventional stillage characteristics which deserve

Table 2

Stillage characterization for sugar beet molasses feedstocks (values are calculated from data in literature sources)a

Feedstock Stillage yield

L/L EtOH

BOD

(COD) g/L

N

(total)

mg/L

P

(total) mg/L

K

mg/L

Total S as

SO4 mg/L

pH References

Beet molasses 11.8 27.5 (55.5) 4750 nd 5560 3500 4.3 Vlissidis and Zouboulis [203]

Beet molasses nd nd (115.8) 56 175 nd 1042 6.69 Boopathy and Tilche [204]

Beet molasses nd 69.3 (147) 2700 222 14500 5800 5.5 Basu [205]

Beet molasses 11.8 nd (72) 7340 91 nd 4520 nd Vlyssides et al. [162]

Beets fresh and molasses 11.3 38 (65) 3000 nd nd nd 4.9 Holmes and Sane [199]

a nd=no data.
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attention are the potential for higher levels of
heavy metals from acid hydrolysis processes and
the presence of unusual inhibitors, such as hard-
wood extractives [92], associated with phenolic
compounds present in the feedstock.

8. Stillage treatment and utilization

Solutions for the treatment, utilization and dis-
posal of stillage have been reviewed [2,48,93±95],
but the role of anaerobic digestion in stillage
treatment received minimal attention in these
previous reviews. An early means of treatment
and disposal included evaporation of the stillage,
neutralization with alkali, followed by incorpor-
ation into road building materials [93]. While the
fertilizer value of molasses stillage was well
recognized, British Guiana banned ®eld appli-
cation to eliminate odor problems [93]. This led
to a process of evaporation followed by incinera-
tion in the bagasse furnace, with the ash returned
to the ®elds for fertilizer recovery [93]. From
1926 to 1942, more than 12 patents were issued
in the US and UK on processes for treating stil-

lage, including charcoal production, pyrolysis,
and various means of fertilizer production [93].

8.1. Physical/mechanical separation

Fig. 3 illustrates the principal stillage treatment
technology and utilization options. First, physi-
cal/mechanical separation can be applied to the
stillage to recover and remove suspended solids
containing yeast and other materials. For whole
grains (corn), the separated solids can be dried
and sold as a high-value animal feed called dried
distillers grains (DDG) [96]. The presence of
unfermented suspended materials facilitates this
recovery process. For sugar crops and cellulosic
crops, the separation of suspended solids proves
more di�cult. Following mechanical treatment, a
host of technologies exists for further processing,
including evaporation and/or membrane separ-
ation, single cell protein production, and anaero-
bic digestion.

8.2. Evaporation and membrane separation

With evaporation, the stillage is concentrated
to a syrup in multi-e�ect evaporators with the

Table 3

Stillage characterization for sugar cane juice and mixed cane juice/cane molasses feedstocks (values are calculated from data in

literature sources)a

Feedstock Stillage yield

L/L EtOH

BOD

(COD) g/

L

N (total)

mg/L

P (total)

mg/L

K

mg/

L

Total S as

SO4 mg/L

pH References

Cane juice 20 12 (25) 400 200 800 nd 3.5 van Haandel and Catunda [3]

Cane juice nd 15 (22) 400 58 nd 400 3.5 Driessen et al. [206]

Cane juice nd 16.5 (33) 700 91 1742 760 3.7±

4.6

Costa et al. [207]

Cane juice nd 20 (nd) nd nd nd nd 3.7±

5.9

Barnes and Halbert [102],

Willington and Marten [208]

Cane juice nd nd (26.0) 1190 320 2100 1470 3.9 Callander and Barford [74]

Cane juice+

molasses

nd 19.8 (45) 710 87 3817 3730 4.4±

4.6

Costa et al. [207]

Cane juice+

molasses

12.5 nd (31.5) 370 24 1300 420 3.9 Souza et al. [209]

a nd=no data.
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co-production of evaporator condensate which is
lower in organics (COD < 10 g/L) and almost
devoid of inorganic salts. In whole grain-to-alco-
hol production, the syrup of concentrated stillage
is mixed with DDG and further dried to a sale-
able product called dried distillers grains and
solubles (DDGS) [97]. In the cane molasses etha-
nol industry, this syrup is sold as a low-value
feed additive called ``condensed molasses solu-
bles'' [20] which is typically high in potassium,
limiting its use in feed formulations due to the
laxative e�ect [98].

While evaporation serves to concentrate stil-
lage components into a smaller volume, the sig-

ni®cant energy required to evaporate the stillage
(equivalent to 10% of the energy content of the
ethanol) can negatively impact the energy balance
of ethanol production [96]. Also, while the evap-
orator condensate is signi®cantly lower in organic
content than stillage, it still contains volatile
organics including ethanol, acetic acid, and for-
maldehyde. The use of evaporator condensate for
make-up water in the cooking process is possible.
This can allow for higher levels of water recycling
than achieved using 50% stillage back-set, but a
build up of inhibitors prevents 100% water recy-
cling [99]. Evaporator condensate has also been
used for both boiler and cooling make-up water,

Table 4

Stillage characterization for cane molasses feedstocks (values are calculated from data in literature sources)a

Feedstock Stillage yield

L/L EtOH

BOD

(COD)

g/L

N

(total)

mg/L

P

(total)

mg/L

K

mg/L

Total S

as SO4

mg/L

pH References

Cane molasses nd 25 (65) 1610 127 6497 6400 4.2±5.0 Costa et al. [207]

Cane molasses 16 25.8 (48) 820 157 nd nd 4.4 de Menezes [48]

Cane molasses nd 27 (88) 2000 nd nd 4000 4.3±4.6 Shrihari and Tare [210]

Cane molasses nd 30 (120) 1600 61 1920 4600 4.1 Harada et al. [211]

Cane molasses nd 32 (nd) 205 6.8 nd nd 4.6 Sahai et al. [212]

Cane molasses nd 35.7

(77.7)

1780 168 8904 4360 4.2 Sheehan and Green®eld [2]

Cane molasses 13±15 39 (100) 1030 33 7000 9500 3.4±4.5 Driessen et al. [206]

Cane molasses nd 40 (nd) 345 38.8 nd 69.5 4.4 Srivastava and Sahai [213]

Cane molasses nd 40 (80) nd 45 4013 nd 4.5±5.0 Silverio et al. [214]

Cane molasses 12 45 (113) nd nd nd nd 4.8 Barnes and Halbert [102],

Willington and Marten [208]

Cane molasses 12 45 (130) 1000 130 nd nd 4.5 Yeoh [4]

Cane molasses nd 48 (nd) 382 10.4 nd 67 4.1 Sahai et al. [215]

Cane molasses 15 50 (108) nd nd 8298 4700 4.5 Lele et al. [5]

Cane molasses 20 60 (130) 2500 200 nd 3000 4.8 Halbert and Barnes [165]

Cane molasses nd 60 (98) 1200 1500 1200 5000 3.8±4.4 Goyal et al. [216]

Cane molasses nd nd (68.9) nd nd 4484 1640 4.72 Espinosa et al. [217]

Cane molasses nd nd (66) nd nd nd nd 4.5 Calzada et al. [138]

Cane molasses 10 nd (75) 975 20 nd nd 4.4 Garcia Garcia et al. [218]

Cane molasses nd nd (100) 2500 300 1750 700 4.6±5.1 Sanchez Riera et al. [219]

Cane molasses 13 nd (22.5) 1192 247 nd nd 5.2 Cho [220]

Cane molasses nd 27.5 (65) 750 nd 10370 nd 4.2±4.5 Sen and Bhaskaran [221]

Cane molasses nd 41 (118) 1135 nd 5070 4200 3.5±3.7 Damodara Rao and

Viraraghavan [190]

Cane molasses nd nd (24.6) 812 29 1980 607 4.17 Casarini et al. [222]

Cane molasses

(rum)

nd 42 (105) 1450 100 nd 4000 4.0±5.0 Szendrey [223±225], Szendrey

and Dorion [226]

Cane molasses

(stored)

nd 27.5

(64.0)

1300 nd nd 2800 4.5±5.5 de Bazua et al. [120]

a nd=no data.
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but the acidity may cause problems in the boiler
and the organics often result in excessive slime
growth in the cooling system, which lowers heat
exchanger e�ciencies. Finally, the evaporator
condensate can undergo aerobic or anaerobic

biological treatment, if required nutrients and
bu�ers are added [100].

Membrane separation has also been employed
for concentration of stillage and recovery of
permeate for recycling in cooking and mashing

Table 5

Stillage characterization for other sugar and starch feedstocks (values are calculated from data in literature sources)a

Feedstock Stillage yield

L/L EtOH

BOD

(COD) g/L

N (total)

mg/L

P (total)

mg/L

K

mg/L

Total S as

SO4 mg/L

pH References

Agave tequilana

(tequila)

10 nd (66.3) nd nd 290 880 3.4 Ilangovan et al. [227]

Apple/pear nd 22 (48.9) 380 62 nd nd 3.4 Robertiello [228]

Banana nd nd (53.7) 1530 150 3830 nd nd Hammond et al. [229]

Barley spirits

(shochu)

1.5 83 (97) 6000 nd nd nd 3.7±4.1 Kitamura et al. [73]

Barley and sweet

potato

nd nd (29.5) nd 9.1 nd 1370 4.2 Shin et al. [230]

Cassava 16 31.4 (81.1) 650 124 nd nd 3.5 de Menezes [48]

Cherry (morello) nd nd (80.0) nd nd nd 34 3.5±4.0 Stadlbauer et al. [90]

Cherry/raspberry nd nd (60.0) nd nd nd 1975 2.7±2.9 Stadlbauer et al. [90]

Corn (thin stillage) nd 26.9 (64.5) 755 1170 nd nd 3.3±4.0 Ganapathi [231]

Corn (thin stillage) nd 43.1 (59.4) 546 228 nd 299 nd Dahab and Young [232]

Figs nd 20.4 (35.4) 880 170 nd 900 3.6 Vlissidis and Zouboulis

[203]

Grapes (cognac) nd nd (26) nd nd 800 nd 3.0±3.2 Henry et al. [233]

Grapes (wine) nd nd (30) 450 65 nd 250 3.5±4 Driessen et al. [206]

Grapes (wine) nd nd (40.0) nd 130 nd nd 3.8 Borja et al. [234]

Grapes (wine) nd 16.3 (27.5) 650 nd nd 120 4.2 Vlissidis and Zouboulis

[203]

Pear nd nd (47.5) nd nd nd 157 3.4±3.8 Stadlbauer et al. [90]

Potato nd nd (52.0) 2100 nd nd nd 4.8 Temper et al. [235]

Potato nd nd (39.0) 1000 430 4000 nd nd Wulfert and Weiland

[236]

Milo (thin stillage) nd 34.9 (75.7) nd 1280 nd nd 2.5±4.0 Stover et al. [237],

Ganapathi [231]

Milo (thin stillage) nd 40.4 (45.5) nd nd nd nd 4.1 Hunter [238]

Raisins nd 30 (57.5) 750 220 nd 480 3.2 Vlissidis and Zouboulis

[203]

Raisins (raki) nd nd (14.0) 250 50 nd nd 3.9 Eremektar et al. [239]

Raspberry nd nd (70.0) nd nd nd 37 2.9±3.8 Stadlbauer et al. [90]

Rice spirits (shochu) nd 25 (50.9) nd 129 nd nd 3.5 Yang and Tung [240],

Yang [241]

Rice spirits (shochu) 1.5 84 (nd) nd 389 nd nd 4.26 Kida et al. [118]

Sweet potato

(shochu)

nd 14.2 (30.7) 1200 140 nd nd 4.5 Nagano et al. [242]

Sweet sorghum 16 46.0 (79.9) 800 1990 nd nd 4.5 de Menezes [48]

Wheat (shochu) nd 25.9 (50.1) 1500 170 nd nd 4.6 Nagano et al. [242]

Whey 1.7 5.4 (nd) nd nd nd nd nd Barry [201]

Whey nd 15 (nd) nd nd nd nd nd Singh et al. [202]

a nd=no data.
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[101]. While energy consumption is less than for
evaporation, membrane fouling is problematic
[102,103] and low molecular weight organics still
pass through the membranes, eliminating the po-
tential for 100% water recycling in the ethanol
production process [104]. Membrane separation
could also be applied to the evaporator conden-
sate but, since this stream only contains low mol-
ecular weight organics, separation e�ciencies
would not be su�cient to remove fermentation
inhibitors.

8.3. Single cell protein production

A potentially viable use of stillage is for single

cell protein (SCP) production [99], where a sec-
ond aerobic culture is employed to remove re-
sidual sugars and soluble proteins in the stillage
and lower the COD and nutrient content [105].
Also, a portion of the stillage can be used to pro-
duce inoculum for ethanol production. Finally,
the sludge from biological treatment of stillage
could be processed into feed materials [106,107].

Five di�erent ®lamentous fungi were grown on
rum stillage, resulting in a COD reduction of up
to 60% with Gliocladium deliquescens performing
best [108]. Several species of Candida were grown
on molasses stillage along with various additives
and the best protein and biomass production
occurred using Candida krusei with a phosphoric

Table 6

Stillage characterization for cellulosic feedstocks (values are calculated from data in literature sources)a

Feedstock/Process Stillage yield

L/L EtOH

BOD

(COD)

g/L

N

(total)

mg/L

P

(total)

mg/L

K

mg/L

Total S

as SO4

mg/L

pH References

Eucalyptus/DA nd nd (22.5) 200 40 nd 260±360 5.8±6.3 Good et al. [243]

Hardwood/TS-DA nd nd (19.1) 2800 74 nd 900 nd Strickland et al.

[244]

Hardwood (willow)/

SE-Enz

nd 19.8 (33.3) nd nd nd nd nd Larsson et al. [12]

Mixed (herbaceous)/

nd

nd 56.2 (140) nd nd nd 602 nd CH2M Hill [245]b

Mixed (biomass)/nd nd 46.8 (119) nd nd nd 617 nd CH2M Hill [245]b

Mixed (softwood)/nd nd 26.7 (72.0) nd nd nd 589 nd CH2M Hill [245]b

MSW/TS-DA-SF nd 32.1 (72.0) 140 nd nd nd 5.5 Broder [200]

MSW/nd nd 20.9 (61) nd nd nd 599 nd Larsson et al. [12]

Pinus radiata/DA-SF 16.7 13.2 (25.5) 95.3 10.3 38.5 600 4.5±5.0 LFTB [246],

Callander et al. [1]

RDF/CA nd 37.7 (104) 13760 14.0 nd nd 5.0 Broder [200]

RDF/DA nd 31.1 (110) 2100 0.68 nd nd 5.9 Broder [200]

RDF/TS-DA-SF nd nd (38.1) nd nd nd nd 5.5 Broder and Henson

[247]

RDF/nd 6.7 6.5 (nd) nd nd nd nd nd DiNovo et al. [168]

Softwood (spruce and

pine)/SE-Enz

nd 12.8 (26.5) nd nd nd nd nd Larsson et al. [12]

Timothy grass/SE 6±15 nd (50) 2100 nd nd nd 4.5±5.0 Belkacemi et al.

[159]

Timothy grass/AFEX 6±15 nd (26) 1100 nd nd nd nd Belkacemi et al.

[248]

a nd=no data; AFEX=Ammonia freeze explosion; CA=Concentrated acid; DA=Dilute acid; MSW=Municipal solid waste;

RDF=Refuse derived fuel; SE=Steam explosion; SE-Enz=Steam explosion and enzymatic hydrolysis; SF=Saccharomyces fer-

mentation; TS=Two stage.
b CH2M HILL (1991) values are predicted estimates.

A.C. Wilkie et al. / Biomass and Bioenergy 19 (2000) 63±10278



acid addition [109]. A mixed culture of Geotri-
chum candidum, C. krusei, and Hansenula anom-
ala was used to reduce the COD of whiskey
stillage by 54.9%, which was higher than
achieved by any of the organisms in pure culture
[110]. Cultivation of pure and mixed cultures of
Aspergillus niger, Penicillium fellutanum, and
Mucor hiemalis on cane molasses resulted in an
optimal process using a spore inoculum of 70%
A. niger and 30% P. fellutanum [111]. Beet mol-
asses stillage was used to propagate a mixed cul-
ture of both Trichosporon and Candida species in
continuous culture, resulting in a 70% COD re-
duction at a loading of 66 g COD/L/day [112].

A two-staged culture of beet molasses, with H.
anomala J 45-N-5 followed by an unknown soil
yeast isolate I-44, resulted in an overall organic
carbon reduction of 75% [113]. A two-staged cul-
ture of sugarcane molasses stillage, by Candida
utilis followed by Paecilomyces variotii, resulted
in a COD reduction of 92% [114]. Cane molasses
stillage was also used to produce C. utilis var.
major NRRL 1087, where large-scale production
(7000 L) was prone to bacterial contamination
which could be controlled by lowering the media
pH [115]. A thermotolerant strain of Candida
rugosa was found to achieve a higher rate of
COD reduction at 408C than at lower tempera-
tures and this higher temperature also improved

¯occulation of the yeast, which would improve
the economics of recovery [116,117]. Beet mol-
asses stillage was also used in the cultivation of a
Hansenula sp., isolated from stillage e�uent,
resulting in a 35.7% COD reduction and the
amino acid pro®le of the biomass compared
favorably with other food protein sources
[118,119]. Shochu stillage was used to cultivate
Aspergillus awamori var. kawachi which resulted
in almost 50% reduction in organic carbon and
improved the rate of anaerobic treatment of the
resulting ®ltrate [120,121].

The use of SCP grown on malt whiskey stillage
as an aquaculture feed has been studied [122]. A
mixed culture of G. candidum, C. krusei, and H.
anomala was substituted for casein protein in
diets of rainbow trout and up to 50% of the pro-
tein could be replaced using the mixed culture
without a�ecting growth. However, the N-utiliz-
ation was less for the SCP-amended feed and
amino acid supplementation did not improve N-
uptake. In another study, C. utilis was found to
be a suitable protein source for rainbow trout
but the yeast was not grown on stillage wastes
[123]. C. utilis grown on cane molasses stillage
(rum) has also been used in laying hen diets and,
though it proved to be inferior to soy protein,
was found to give adequate performance at a
10% level in the feed [124]. Ultimately, the econ-

Table 7

Summary of stillage characterization for beet molasses, cane juice, cane molasses, and cellulosic feedstocksa

Feedstock Stillage

yield L/L

EtOH

BOD

g/L

COD

g/L

COD/

BOD

N

(total) mg/

L

P

(total)

mg/L

K

mg/L

Total S

as SO4

mg/L

pH

Beet molasses Ð Average 11.6 44.9 91.1 1.95 3569 163 10030 3716 5.35

Ð std dev 0.3 21.7 38.9 0.21 2694 66 6322 2015 1.02

Ð n 3 3 5 3 5 3 2 4 4

Cane juice Ð Average 16.3 16.7 30.4 1.96 628 130 1952 1356 4.04

Ð std dev 5.3 3.4 8.2 0.35 316 110 1151 1396 0.49

Ð n 2 5 6 4 6 6 5 5 7

Cane molasses Ð Average 14.0 39.0 84.9 2.49 1229 187 5124 3478 4.46

Ð std dev 3.3 10.8 30.6 0.57 639 350 3102 2517 0.35

Ð n 7 19 22 16 20 17 12 16 25

Cellulosics Ð Average 11.1 27.6 61.3 2.49 2787 28 39 651 5.35

Ð std dev 4.14 15.2 40.0 0.54 4554 30 nd 122 0.53

Ð n 4 11 15 10 8 5 1 6 7

a nd=no data; std dev=standard deviation; n=number of literature values used.
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omics of SCP production will be highly depen-
dent on the market for SCP.

8.4. Calcium magnesium acetate

The production of organic acids from stillage
for sale in the industrial chemical market has
received recent attention [125]. In North Amer-
ica, the use of NaCl for winter time de-icing of
roads and bridges is known to cause environmen-
tal degradation and to enhance corrosion rates of
structures and vehicles, resulting in signi®cant
economic loss. Calcium magnesium acetate
(CMA), as well as potassium acetate, are con-
sidered the most suitable substitutes for de-icing
salt as they produce less environmental damage
and are less corrosive. The market for CMA
could grow signi®cantly as restrictions on the use
of road salt are mandated. One means of CMA
production is through the fermentation of carbo-
hydrates by Clostridium thermoaceticum followed
by the precipitation and recovery of the organic
acids, of which acetic acid is the major end-pro-
duct. To lower the cost of nutrients required in
the fermentation, the use of stillage has been
investigated and found to be as e�ective as more
expensive media additives [125±127].

8.5. Other bioproducts

The use of stillage for the production of poten-
tially viable biological products including
enzymes, chitosan, astaxanthin, plant hormones
and the biopolymers, alternan and pullulan, has
been studied. Shochu stillage was used to pro-
duce A. awamori var. kawachi for fodder, which
also produced an e�ective saccharifying enzyme
[128]. Shochu stillage was also employed in the
production of both a protease, using Aspergillus
usami mut. shirousami [129], and chitosan using
Gongronella butleri which resulted in a 49%
COD reduction [130]. Astaxanthin, a staining
agent and quencher, has uses in both food pro-
cessing and medical diagnostics, and its pro-
duction by Pha�a rhodozyma was enhanced by
supplementation of the media with molasses stil-
lage [131]. A 1:4 dilution of stillage was found to
enhance the production of the plant hormones,

gibberellic acid, abscisic acid, indole acetic acid,
and cytokinin by both Funalia trogii and Tra-
metes versicolor [132]. Finally, condensed solubles
from wet-milled corn stillage was used to sup-
plement the media for Leuconostoc mesenteroides
for the production of the biopolymer, alternan,
which has uses in foods and cosmetics [133], and
a similar substrate was also used for the pro-
duction of pullulan by Aureobasidium [134].

8.6. Anaerobic digestion

Anaerobic digestion can serve as an e�ective
means for removing COD from stillage and con-
verting it to biogas, which is a readily usable fuel
for the ethanol facility. This treatment option is
examined in more detail in the next section.
While sugar mills have bagasse in excess of fuel
requirements [135], generation and sale of electri-
city can allow complete utilization of the bagasse
by-product [136], as well as the biogas from an-
aerobic digestion of stillage. In addition, while
sludge production from anaerobic digestion is
low compared to that produced using aerobic
treatment, the high COD of stillage will result in
anaerobic sludge production which could be pro-
cessed into feed materials [121,137]. The nutrients
contained in the stillage are generally conserved
through anaerobic digestion. After the majority
of the organic content of the stillage has been
removed by anaerobic digestion, only refractory
organic compounds and inorganic compounds
remain, including plant macro-nutrients (N, P,
and K), plant micro-nutrients (Fe, Zn, Mn, Cu,
and Mg), and nonessential metals. The appli-
cation of anaerobic digester e�uents to croplands
returns these nutrients to a productive nutrient
cycle. However, these nutrients may cause en-
vironmental degradation if over-applied to crops,
or if the treated stillage is discharged into surface
or marine waters [48].

8.7. Algae production

One potential means for removing the most
environmentally detrimental of these nutrients (N
and P) is via the growth of algae on the treated
e�uent [138,139]. Spirulina platensis is most often
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considered for nutrient polishing of e�uents due
to its high productivity, ease of harvesting, and
potential market as an animal feed supplement.
Spirulina maxima has been grown satisfactorily
on dilutions of stillage while reducing the COD
by 74% [140]. However, unless the ®nal disposi-
tion is to marine waters, the high sodium require-
ments for Spirulina production could damage
some soil and surface water ecosystems. Chlorella
vulgaris has also been used for nutrient removal
and to measure the stimulative e�ect of stillage
on algae growth [141]. Chlamydomonas reinhardii
growth was found to be stimulated by additions
of 5% molasses stillage, with levels over 10%
causing decreases in growth [142]. Also, algae
may have potential in the removal of heavy
metals from distillery e�uents [143].

8.8. Color removal

Reducing the color of stillage, in addition to
COD reduction and nutrient removal, may be
required to allow the discharge of treated e�u-
ents into surface waters without degrading water
quality. Highly colored wastewater can reduce
the penetration of solar energy into shallow
waters, which is required by aquatic plants for
maintaining oxygen levels through photosyn-
thesis. These colored e�uents can cause death
and decay of aquatic plants, which then contrib-
ute to oxygen demand and cause eutrophication.
Color may be measured after removal of sus-
pended solids and appropriate dilution and com-
pared with a platinum±cobalt standard, but most
of the work on color in stillage has relied merely
on spectrophotometric absorption at a wave-
length of 475 nm. While the removal of color
may not be required for land application of stil-
lage e�uents, some facilities may not have ade-
quate land area and must discharge e�uents into
surface waters.

Methods studied for color removal of stillage
e�uents include ¯occulation and coagulation,
photocatalytic color removal, and microbial
color removal by bacteria and fungi. A polymer
of ferric-hydroxy-sulfate was used in the ¯occula-
tion and coagulation of both fresh and anaerobi-
cally digested cane molasses stillage resulting in

32 and 87% reduction in absorbance at 475 nm,
respectively [144]. In another study, alum, com-
mercial inorganic ¯occulants, and commercial
cationic polymers, were all capable of 86% color
removal (absorbance at 475 nm) of anaerobic±
aerobic treated molasses stillage, while less than
3% color removal was obtained for raw e�uent
[145]. Photocatalytic color removal after anaero-
bic treatment of stillage was shown to be e�ective
[146], where digested cane molasses stillage (rum)
exhibited a range of 75,000±100,000 Pt±Co color
units (456 nm). A 10% dilution of this treated
stillage was required to allow UV light pen-
etration and, using a titanium dioxide catalyst,
99% color removal occurred within 1 day.

Microbial color removal has received consider-
able attention. An unknown bacterial soil isolate
capable of agar liquefaction was found to
remove, under anaerobic conditions, 71% of the
color (absorbance at 475 nm) from anaerobically
digested cane molasses stillage, while raw stillage
underwent only 50% color removal [147]. An
aerobic soil bacterial isolate from an Indian dis-
tillery resulted in a 36.5% color removal of
digested cane molasses stillage in 8 days under
aerobic conditions when nutrients and glucose
were provided [148]. A culture of Lactobacillus
hilgardii was capable of melanoidin conversion to
lactic acid and produced 28% and 40% decolori-
zation of cane and beet molasses, respectively
[149]. L. hilgardii was also capable of continuous
decolorization under anaerobic conditions [150].
An immobilized isolate of the bacteria Lactoba-
cillus casei was found to achieve a decolorization
of 52% and a COD reduction of 57%, and to
simultaneously produce 11.3 mg/mL of lactic
acid, when fermenting digested cane molasses
stillage supplemented with nutrients and glucose
[151].

Filamentous fungi have also shown promise.
After 8 days, an isolate resembling Mycelia steri-
lia, with proper nutrient and glucose additions,
resulted in 93% decolorization of a molasses pig-
ment solution prepared from molasses stillage
[152,153]. White-rot fungi have also been
employed for decolorization, commonly using
Coriolus versicolor. C. versicolor was found to
achieve 71.5% color removal along with a 90%

A.C. Wilkie et al. / Biomass and Bioenergy 19 (2000) 63±10282



T
a
b
le

8

M
es
o
p
h
il
ic

a
n
a
er
o
b
ic

tr
ea
tm

en
t
o
f
st
il
la
g
e
fr
o
m

b
ee
t
a
n
d
ca
n
e
m
o
la
ss
es

fe
ed
st
o
ck
s
(v
a
lu
es

a
re

ca
lc
u
la
te
d
fr
o
m

d
a
ta

in
li
te
ra
tu
re

so
u
rc
es
)a

F
ee
d
st
o
ck

R
ea
ct
o
r
ty
p
e

(s
iz
e
Ð

L
)

In
¯
u
en
t

B
O
D

(C
O
D
)

g
/L

H
R
T

(d
a
y
s)

O
L
R

(g
C
O
D
/L
/

d
a
y
)

T
em

p

(8
C
)

T
re
a
tm

en
t

e�
ci
en
cy

%
re
m
o
v
ed

B
O
D

(C
O
D
)

M
et
h
a
n
e

y
ie
ld

(P
ro
d
)

L
/g

C
O
D

(L
/L
/d
a
y
)

R
ef
er
en
ce
s

B
ee
t
m
o
la
ss
es

H
A
B
R

(1
6
5
)

n
d
(1
1
6
)

5
.7
8

2
0
.0

3
7

n
d
(7
0
)

0
.0
8
(1
.6
9
)

B
o
o
p
a
th
y
a
n
d
T
il
ch
e
[2
0
4
]

B
ee
t
m
o
la
ss
es

U
A
S
B
(5
�
1
0
3
)

n
d
(1
0
)

0
.5
8

1
3
.8

3
9

n
d
(5
5
.4
)

0
.3
6
(4
.9
5
)

P
ip
y
n
a
n
d
V
er
st
ra
et
e
[2
4
9
]

B
ee
t
m
o
la
ss
es

U
F
F
(5
0
0
)

n
d
(4
8
)

1
.3

3
6
.0

4
2

n
d
(5
0
)

0
.3
6
(1
2
.4
)

B
ra
u
n
a
n
d
H
u
ss

[2
5
0
]

B
ee
t
m
o
la
ss
es

D
F
F
(5
�
1
0
3
)

3
0
(7
3
)

9
.1

8
.0

3
7

n
d
(7
0
)

n
d
(n
d
)

A
th
a
n
a
so
p
o
u
lo
s
[2
5
1
]

C
a
n
e
m
o
la
ss
es

U
A
S
B
(1
1
�
1
0
3
)

n
d
(1
5
.2
)

0
.8
3

1
8
.3

n
d

n
d
(7
6
)

0
.2
8
(5
.2
)

C
o
st
a
et

a
l.
[2
0
7
]

C
a
n
e
m
o
la
ss
es

U
A
S
B
(4
2
.5
)

3
9
(1
0
0
)

1
0

1
0

n
d

8
7
(6
7
)

n
d
(n
d
)

D
ri
es
se
n
et

a
l.
[2
0
6
]

C
a
n
e
m
o
la
ss
es

U
A
S
B
(4
2
.5
)

4
3
(1
0
9
)

6
.8

1
6

n
d

8
5
(6
7
)

n
d
(n
d
)

D
ri
es
se
n
et

a
l.
[2
0
6
]

C
a
n
e
m
o
la
ss
es

2
-G

A
C
F
(5
.2
5
)

n
d
(7
0
)

1
0

7
2
7

n
d
(8
1
)

0
.2
5
(1
.7
7
)

G
o
y
a
l
et

a
l.
[2
1
6
]

C
a
n
e
m
o
la
ss
es

U
A
S
B
(2
.3
)

n
d
(6
8
.9
)

3
.2

2
1
.5

3
5

n
d
(5
8
)

0
.1
7
(3
.6
)

E
sp
in
o
sa

et
a
l.
[2
1
7
]

C
a
n
e
m
o
la
ss
es

D
F
F
(n
d
)

n
d
(5
0
)

1
0

2
5
.0

3
5

n
d
(7
8
.1
)

0
.1
7
(n
d
)

S
h
ri
h
a
ri
a
n
d
T
a
re

[2
1
0
]

C
a
n
e
m
o
la
ss
es

A
C
R

(2
0
)

6
0
(1
3
0
)

1
0

4
.6

3
6

9
0
(8
5
)

0
.3
7
(n
d
)

H
a
lb
er
t
a
n
d
B
a
rn
es

[1
6
5
]

C
a
n
e
m
o
la
ss
es

2
-C

S
T
R

(6
.0
)

1
3
.7

(2
2
.5
)

4
.1

5
.4

3
7

8
9
(6
3
)

0
.2
0
(0
.3
5
)

C
h
o
[2
2
0
]

C
a
n
e
m
o
la
ss
es

U
A
S
B
(1
0
0
)

n
d
(4
6
)

2
2
3
.3

4
0

n
d
(7
1
.3
)

0
.2
2
(5
.1
)

S
a
n
ch
ez

R
ie
ra

et
a
l.
[2
1
9
]

C
a
n
e
m
o
la
ss
es

F
B
(3
0
0
)

n
d
(6
7
.7
)

5
1
3
.5

3
0
±
3
7

n
d
(6
6
.3
)

0
.1
5
(2
.0
4
)

d
e
B
a
zu
a
et

a
l.
[1
2
0
]

C
a
n
e
m
o
la
ss
es

2
-C

S
T
R

(2
.5
�
1
0
6
)

4
9
(1
3
2
)

5
.6

5
.1

3
5
±
4
0

8
4
.3

(6
3
.2
)

n
d
(n
d
)

Y
eo
h
[4
]

C
a
n
e
m
o
la
ss
es

H
U
A
S
B
(5
)

4
0
(1
0
3
)

0
.2
5

3
6

3
0

n
d
(8
0
)

0
.4

(1
4
.4
)

S
h
iv
a
y
o
g
im

a
th

a
n
d

R
a
m
a
n
u
ja
m

[2
5
2
]

C
a
n
e
m
o
la
ss
es

U
A
S
B
(n
d
)

n
d
(8
8
)

4
.4

2
0

3
5

n
d
(6
1
)

0
.2
8
(n
d
)

M
o
rr
is
a
n
d
B
u
rg
es
s
[2
5
3
]

C
a
n
e
m
o
la
ss
es

A
C
R

(1
6
0
�
1
0
3
)

n
d
(8
0
)

1
6

5
3
3

n
d
(8
0
)

0
.2
2
(0
.7
4
)

K
a
rh
a
d
k
a
r
et

a
l.
[2
5
4
]

C
a
n
e
m
o
la
ss
es

(r
u
m
)

A
C
R

(1
8
9
0
)

3
2
.9

(7
4
.8
)

1
9

3
.6

3
5

n
d
(6
7
.8
)

0
.1
9
(0
.7
0
)

S
h
ea

et
a
l.
[2
5
5
]

C
a
n
e
m
o
la
ss
es

(r
u
m
)

A
C
R

(3
0
)

n
d
(5
4
.6
)

6
.8

8
.0

3
5

n
d
(7
8
)

0
.3
7
(2
.9
6
)

R
o
th

a
n
d
L
en
tz

[2
5
6
]

C
a
n
e
m
o
la
ss
es

U
F
F
(5
.2
5
)

n
d
(6
6
.1
)

5
.6

1
1
.7
6

3
5

n
d
(7
1
.8
)

0
.2
3
(2
.7
)

S
et
h
et

a
l.
[2
5
7
]

C
a
n
e
m
o
la
ss
es

(r
u
m
)

D
F
F
(1
.7
�
1
0
6
)

2
0
.5

(5
7
.6
)

3
.8

1
5

3
5

6
0
(8
5
)

0
.2
2
(3
.5
)

B
o
ri
es

et
a
l.
[2
5
8
]

C
a
n
e
m
o
la
ss
es

(r
u
m
)

U
F
F
(1
0
�
1
0
3
)

n
d
(5
5
.0
)

2
.8

2
0

3
6

8
8
(7
0
)

0
.2
4
(4
.8
)

A
rn
o
u
x
et

a
l.
[2
5
9
]

C
a
n
e
m
o
la
ss
es

(r
u
m
)

D
F
F
(1
3
.2
�
1
0
6
)

4
2
(1
0
5
)

8
.2

1
2
.8

3
8

8
5
(7
0
)

0
.2
1
(n
d
)

S
ze
n
d
re
y
[2
2
3
±
2
2
5
],
S
ze
n
d
re
y

a
n
d
D
o
ri
o
n
[2
2
6
]

a
n
d
=

n
o
d
a
ta
;
A
C
R
=
A
n
a
er
o
b
ic

co
n
ta
ct

re
a
ct
o
r;

2
-C

S
T
R
=
2
-s
ta
g
ed

co
n
ti
n
u
o
u
sl
y
st
ir
re
d
re
a
ct
o
r;

D
F
F
=
D
o
w
n
¯
o
w

®
x
ed

®
lm

;
F
B
=
F
lu
id
iz
ed
-b
ed
;
2
-G

A
C
F
=
2
-

p
h
a
se
d

g
ra
n
u
la
r
a
ct
iv
a
te
d

ca
rb
o
n

®
x
ed

®
lm

;
H
A
B
R
=

H
y
b
ri
d

a
n
a
er
o
b
ic

b
a
�
ed

re
a
ct
o
r;

H
U
A
S
B
=
H
y
b
ri
d

U
A
S
B
;
U
A
S
B
=
U
p
¯
o
w

a
n
a
er
o
b
ic

sl
u
d
g
e

b
la
n
k
et
;

U
F
F
=

U
p
¯
o
w

®
x
ed

®
lm

.

A.C. Wilkie et al. / Biomass and Bioenergy 19 (2000) 63±102 83



COD reduction in anaerobically digested cane
molasses stillage when the e�uent was amended
with glucose [154]. The same organism achieved
only 53% color removal when using fresh cane
molasses stillage [155].

In all cases where decolorization was applied
to anaerobically digested stillage compared to
raw stillage, the level of decolorization was
enhanced. In one case, G. candidum was grown
on winery stillage to remove phenolic compounds
prior to anaerobic digestion in order to improve
anaerobic treatment performance [156]. Similarly,
Penicillium decumbens was grown on beet mol-
asses stillage to reduce phenolics which substan-
tially improved digestion [157]. Most of these
microbial decolorization studies required e�uent
dilution for optimal activity and, in cases where
aerobic fermentation is required, the energy
demand could be signi®cant. Decolorization tech-
nology has not been applied at full-scale and can-
not yet be considered a developed technology.

8.9. Other treatment processes

Several additional processes have been studied
which hold potential for stillage processing and
these include both thermal and electrochemical
processes. First, thermal pretreatment using
direct wet air oxidation of stillage followed by
char recovery and incineration for steam pro-
duction showed the potential for higher energy
recovery than stillage evaporation followed by
syrup incineration [5]. Also, supercritical water
oxidation of stillage, using H2O2 at elevated tem-
peratures of 673±773 K, has been shown to result
in rapid reduction in organic strength [158].
Attempts at solid-catalyzed wet oxidation of stil-
lage, using pure oxygen and MnO2/CeO2 mixed
oxide catalyst at elevated temperatures (620 K)
and pressures (20 MPa), were successful at redu-
cing stillage strength, but resulted in inactivation
of solid catalyst by carbonaceous fouling and
reaction inhibition by stable intermediates [159].
Thermochemical liquefaction of stillage, using a
sodium carbonate catalyst at elevated tempera-
tures (3008C) and pressures (12 MPa), produced
a maximum oil yield of 60% [160]. Finally, elec-
trochemical treatment of stillage using NaCl,

resulted in the production of chlorine and other
oxidants which destructively oxidized stillage
COD [161,162]. None of these processes have
been attempted at large scale and they cannot be
considered as proven or economical stillage treat-
ment methods at this time.

8.10. Final disposition

Nutrients contained in ethanol feedstocks are
drawn from the soils on which these crops are
grown and, therefore, should be returned to these
soils for the ethanol production system to be
truly sustainable. Thus, land application is the
most appropriate method for ®nal disposition of
ethanol stillage. In Brazil, much e�ort has been
focused on the proper utilization of stillage nutri-
ents [48] and methods for land application of
untreated stillage onto sugar cane ®elds prior to
planting have been developed. Experience has
shown that application of untreated stillage to
standing pasture can result in phytotoxicity [91],
presumably due to N-immobilization. This was
overcome by amending the untreated stillage
with ammonia, but this increased the land area
required and the cost of disposal. The use of sur-
face and marine waters for ®nal disposition
should be discouraged but there may be site-
speci®c circumstances in which these options
have to be considered. Where surface water dis-
charge is required, methods for tertiary treatment
[163] (nutrient removal) should be considered,
along with decolorization.

Odor control alone is su�cient incentive to
consider appropriate treatment for stillage prior
to discharge. Finally, the long-term impact of Na
salts in stillage e�uents on agronomic properties
of soils has not been adequately studied and the
replacement of sodium-based chemicals in plant
operations should be investigated. The ®nal dis-
position of stillage and treated stillage e�uents
will be considered in depth in a subsequent
review [164].

9. Anaerobic treatment of stillage

Anaerobic treatment of ethanol stillage has
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often been cited as an e�ective and economic
treatment option [2,3,48,102,165,166]. However,
some studies [8,9,89,167,168] overlooked the po-
tential of anaerobic digestion and considered the
application of aerobic treatment for ethanol
wastewaters. The high COD of stillage means
that signi®cant aeration power would be required
for aerobic treatment and that about 50% of the
COD would be converted to sludge requiring
further disposal [99,169]. Anaerobic digestion can
convert a signi®cant portion (>50%) of the
COD to biogas, which may be used as an in-
plant fuel, and also saves the energy that would
be required for aeration using aerobic treatment.
In addition, anaerobic digestion has about 10%
of the sludge yield and lower nutrient require-
ments compared to aerobic treatment [170].

A considerable amount of research has been
conducted on anaerobic digestion of ethanol stil-
lage from conventional feedstocks, especially
cane molasses. Cane molasses stillage with a
COD of over 100 g/L has been found to inhibit
stable digestion and this may be overcome by di-
lution to a COD of around 50 g/L [171] using
other waste streams at the plant. High potassium
levels [172], high levels of metals [173], high stil-
lage sulfate levels [174], and the presence of phe-
nolic compounds [156,157,175] have been
implicated in molasses stillage digestion de-
®ciencies.

The e�ects of wastewater sulfate levels on an-
aerobic treatment have received considerable
attention [176,177]. In anaerobic treatment,
wastewater sulfate is converted to more toxic sul-
®de at the expense of methane production and
leaves the reactor as either sul®de in the e�uent
or hydrogen sul®de in the biogas. E�uent sul®de
levels contribute to odors, corrosiveness and
e�uent oxygen demand, while hydrogen sul®de
in the biogas causes corrosion problems in
engines and boilers. In general, sul®de inhibition
is not encountered in anaerobic treatment when
the wastewater COD/SO4 ratio is above 10 g/g,
while inhibition is severe when the ratio is below
0.5 g/g [177]. This is caused by the stripping
e�ect of higher biogas production rates which
rapidly remove sul®de as it is formed. Digestion
of wastewater with an intermediate COD/SO4T

a
b
le

1
0

T
h
er
m
o
p
h
il
ic

a
n
a
er
o
b
ic

tr
ea
tm

en
t
o
f
st
il
la
g
e
fr
o
m

co
n
v
en
ti
o
n
a
l
fe
ed
st
o
ck
s
(v
a
lu
es

a
re

ca
lc
u
la
te
d
fr
o
m

d
a
ta

in
li
te
ra
tu
re

so
u
rc
es
)a

F
ee
d
st
o
ck

R
ea
ct
o
r
ty
p
e

(s
iz
e
Ð

L
)

In
¯
u
en
t

B
O
D

(C
O
D
)
g
/L

H
R
T

(d
a
y
s)

O
L
R

(g
C
O
D
/

L
/d
a
y
)

T
em

p

(8
C
)

T
re
a
tm

en
t
e�

ci
en
cy

%
re
m
o
v
ed

B
O
D

(C
O
D
)

M
et
h
a
n
e
y
ie
ld

(P
ro
d
)
L
/g

C
O
D

(L
/L
/d
a
y
)

R
ef
er
en
ce
s

B
a
rl
ey

(s
h
o
ch
u
)

U
F
B
(0
.4
5
)

1
2
.6

(2
1
.4
)

0
.1
8

1
1
5

5
3

n
d
(7
8
.0
)

0
.2
7
(3
1
.6
)

K
id
a
a
n
d
S
o
n
o
d
a
[2
6
9
]

B
ee
t
m
o
la
ss
es

U
A
S
B
(2
�
1
0
6
)

3
5
(4
3
.2
)

1
0
.5

6
.5
7

5
2
.7

8
8
.0

(8
6
.0
)

0
.4
3
(0
.8
1
)

V
li
ss
id
is
a
n
d
Z
o
u
b
o
u
li
s

[2
0
3
]

B
ee
t
m
o
la
ss
es

U
A
S
B
(5
.7
5
)

n
d
(1
5
.4
)

0
.1
8

8
3
.6

5
5

n
d
(5
9
.6
)

0
.2
6
(2
2
.1
)

W
ie
g
a
n
t
et

a
l.
[2
7
0
]

C
a
n
e
m
o
la
ss
es

U
A
S
B
(1
4
0
)

2
.5

(1
0
)

0
.4
3

2
3
.5

5
5

8
8
.2

(4
0
)

0
.1
2
(3
)

H
a
ra
d
a
et

a
l.
[2
1
1
]

C
a
n
e
m
o
la
ss
es

U
A
S
B
(5
.8
)

n
d
(3
.8
)

0
.1
6

2
4
.0

5
5

n
d
(6
6
)

n
d
(n
d
)

H
a
ra
d
a
et

a
l.
[2
1
1
]

C
a
n
e
m
o
la
ss
es

2
-C

S
T
R

(8
.6
)

4
5
(1
3
0
)

5
.6

2
0
.0

5
5

9
0
.2

(6
5
.2
)

0
.1
7
(1
.2
3
)

R
in
ta
la

[2
7
1
]

C
a
n
e
ju
ic
e+

m
o
la
ss
es

U
A
S
B
(7
0
�
1
0
3
)

n
d
(3
1
.5
)

0
.4
5

2
6
.5

5
6

n
d
(7
1
.7
)

0
.2
2
(5
.8
8
)

S
o
u
za

et
a
l.
[2
0
9
]

G
ra
p
es

(w
in
e)

A
F
B
(0
.2
5
)

n
d
(1
5
)

0
.4
6

3
2
.3

5
5

n
d
(8
2
.5
)

0
.3
3
(5
.8
)

P
er
ez

et
a
l.
[2
7
2
]

G
ra
p
es

(w
in
e)

U
F
F
(2
.0
)

n
d
(1
5
)

0
.8
2

1
9
.6

5
5

n
d
(4
7
.9
)

0
.1
8
(3
.5
5
)

P
er
ez

et
a
l.
[2
7
3
]

G
ra
p
es

(w
in
e)

C
S
T
R

(1
.8
)

1
1
.7

(1
6
.6
)

4
4
.1
5

5
5

n
d
(8
8
)

0
.2
5
(1
.0
4
)

R
o
m
er
o
et

a
l.
[2
7
4
]

a
n
d
=

n
o
d
a
ta
;
A
F
B
=

A
n
a
er
o
b
ic

¯
u
id
iz
ed

b
ed

re
a
ct
o
r;

C
S
T
R
=

C
o
n
ti
n
u
o
u
sl
y
st
ir
re
d
re
a
ct
o
r;

2
-C

S
T
R
=
2
-s
ta
g
ed

co
n
ti
n
u
o
u
sl
y
st
ir
re
d
re
a
ct
o
r;

U
A
S
B
=
U
p
¯
o
w

a
n
-

a
er
o
b
ic

sl
u
d
g
e
b
la
n
k
et
;
U
F
B
=

U
p
¯
o
w
-¯
u
id
iz
ed

b
ed
;
U
F
F
=

U
p
¯
o
w

®
x
ed

®
lm

.

A.C. Wilkie et al. / Biomass and Bioenergy 19 (2000) 63±10286



ratio may be handled by diluting the wastestream
to a COD of 15 g/L so that the sul®de is
removed in the e�uent at the higher ¯ow rate
that dilution allows [177]. Finally, high reactor
sul®de levels can also be mitigated by adding sol-
uble Fe3+, which promotes precipitation of fer-
rous sul®de.

Table 8 lists treatment parameters for mesophi-
lic anaerobic digestion of stillage from beet and
cane molasses. Table 9 lists treatment parameters
for mesophilic anaerobic digestion of stillage
from some other conventional feedstocks.
Table 10 lists treatment parameters for thermo-
philic anaerobic digestion of stillage from beet
and cane molasses. Table 11 lists treatment par-
ameters for anaerobic digestion of stillage from
cellulosic feedstocks. Finally, Table 12 summar-
izes the anaerobic treatment parameters from
Tables 8±11.

For the mesophilic studies, the average organic
loading rate (OLR) applied is 9±12 g COD/L/
day, with an average COD treatment e�ciency
greater than 70% and average methane yield
greater than 0.25 L/g COD added (Table 12).
Thus, the treatment e�ciencies and loading rates
for mesophilic anaerobic treatment are quite high
and indicate that anaerobic digestion is a suitable
method for biological treatment of the waste.
Since stillage leaves the distillation process at
about 908C, cooling is required to bring the
waste down to mesophilic temperatures (<428C).

Application of thermophilic digestion would
only require cooling the stillage to under 608C,
which occurs naturally during temporary stillage
storage. Table 12 shows that thermophilic treat-
ment of molasses stillage achieves similar BOD
treatment e�ciencies at almost twice the OLR of
mesophilic systems. While the average COD
treatment e�ciency for thermophilic molasses
stillage digestion appears lower than that for
mesophilic, this di�erence is most likely due to
variations in the refractory COD of the molasses
stillage and the lower thermophilic methane
yields tend to con®rm this. The higher thermo-
philic OLRs indicate that smaller digesters are
required which should improve process econ-
omics. It is interesting to note that, in 1932,
Boru� and Buswell advocated thermophilic an-T
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aerobic digestion of stillage [178], and yet the lit-
erature indicates that only two full-scale thermo-
philic digesters have been built (Table 10).

The failure to implement thermophilic stil-
lage digestion is caused by a number of fac-
tors, including: (1) a lack of availability of
thermophilic inocula; (2) a perceived higher
sensitivity of thermophilic digestion compared
to mesophilic digestion; (3) concern about
restart of intermittently operated thermophilic
digesters; and (4) perceived higher COD levels
in thermophilic e�uent compared to mesophilic
e�uent. A number of studies have shown that
the use of mesophilic inocula does not limit
the development of thermophilic biomass [179±
183]. Likewise, some studies have shown that
thermophilic digestion is more tolerant to or-
ganic overloads than mesophilic digestion when
immobilized reactor designs are used [184,185].
In tropical climates between sugarcane har-
vests, the temperature in an idled thermophilic
digester would drop to an ambient temperature
of 25±358C. At the start of the next cane har-
vesting season, the reactor must be brought to
design operating temperature and loading rate
within a reasonable period. There is no indi-
cation that this restart period is longer for
thermophilic digesters [186] than for mesophilic
digesters [187,188]. Finally, a comparison of
e�uent COD from thermophilic versus meso-
philic digestion of cane molasses stillage in
Brazil concluded that higher e�uent COD was
a disadvantage of the thermophilic process
[189]. However, the thermophilic reactor was
only installed to provide biogas for yeast dry-
ing and the bulk of the stillage was land
applied without treatment, so there was no
incentive to limit e�uent COD from the reac-
tor [189]. If appropriate loading rates and
nutrient supplementation are maintained, there
is no reason for e�uent COD levels from
thermophilic reactors to exceed those of meso-
philic reactors treating the same wastewater
[184]. Thus, lower cooling demand and
increased loading rates should make thermo-
philic anaerobic stillage treatment preferable in
future installations.

Table 13 lists some of the full-scale anaerobic

digesters currently treating stillage by supplier,
reactor type, country and range of OLR. This list
indicates that at least 149 facilities have been
built, and that 87 of these are in India. While
most of these digesters are of the up¯ow anaero-
bic sludge-blanket (UASB) or expanded granular
sludge-bed (EGSB) design (78 UASB; 3 EGSB),
a signi®cant number (27) of bulk volume fermen-
ters (BVF) have been commissioned as well.
There are also 22 down¯ow ®xed ®lm (DFF)
digesters, 10 anaerobic contact (AC) digesters, six
hybrid (Hybr) digesters, and three up¯ow ®xed
®lm (UFF) digesters. The immobilized sludge
reactors (UASB, EGSB, DFF, UFF and Hybr
systems) have signi®cantly higher OLRs, with a
trend of higher OLRs in developed countries. In
contrast, the BVF have much lower OLRs, with
a trend of higher OLRs in developing countries.
This may suggest that a higher level of control in
developed countries allows high OLRs in the im-
mobilized sludge type digesters, while less strin-
gent discharge requirements may allow higher
OLRs for BVF in developing countries. In India,
the BVF is regarded as being the most inexpen-
sive and stable design which is applicable where
land area is not restrictive [190]. The number of
full-scale anaerobic digesters operating on stillage
wastes is a valid testament to the feasibility of
this treatment technology.

Finally, the limited data regarding anaerobic
treatment of stillage from cellulosic feedstocks
(Table 11) are comparable with treatment par-
ameters from other feedstocks (Table 12). The
OLR applied and treatment e�ciencies achieved
indicate that cellulosic stillage is amenable to an-
aerobic treatment. However, the limited number
of studies on stillage from di�erent cellulosic
feedstocks and hydrolysis methods means that
predictions of treatment performance are prone
to error. Improved predictions could be made if
a larger data set of cellulosic stillage character-
istics and treatment parameters were developed.

10. Summary and conclusions

This technical review was developed from
research conducted at the University of Florida
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to assess the feasibility of an integrated biomass-

to-energy system in Central Florida which

resulted in several related publications [16,191±

197]. Table 14 lists some cellulosic-to-ethanol

conversion projects currently under development

in North America [198]. Large-scale production

of ethanol from lignocellulosic biomass has con-

siderable potential due to the availability of sig-

ni®cant resources of lignocellulosic biomass.

However, substantial increases in ethanol pro-

duction also require e�ective solutions for stillage

management. This e�ort has contributed to an

appreciation of the potential impacts of the bio-

mass-to-ethanol production process on cellulosic

stillage characteristics and utilization. It can be

concluded from this study that existing research

supports the application of anaerobic digestion

for cellulosics-to-ethanol stillage treatment and

biogas recovery. However, there is a need for

further information on the characteristics and

treatment of cellulosic-based stillage.

The results of some of the research currently

underway, both in the US and in other countries

at the forefront of commercially viable biomass-

to-ethanol technology development (e.g., Canada,

Brazil, New Zealand, etc.), are not widely avail-

able and not immediately accessible to the

authors. Speci®c research e�orts resulting in

greater information dissemination would facili-

tate government and industry progress toward

economically and environmentally sustainable

biomass-to-ethanol energy production systems.

Areas of research apparent to the authors which

merit further investigation include:

1. hydrolysis stillage characterization data should

be obtained for pertinent feedstocks, hydroly-

sis methods, and fermentation schemes, and

these results should be considered during feed-

stock and process selection/optimization;

2. as ®nal selection of feedstock/process is

approached, corresponding hydrolysis stillage

treatability studies should be performed prior

to preliminary process design and cost esti-

mation.

Thermophilic anaerobic digestion of ethanol

stillage achieves similar BOD treatment e�cien-

cies and methane yields, at almost twice the or-

ganic loading rate, compared to mesophilic

treatment. Therefore, application of thermophilic

anaerobic digestion would improve process econ-

omics, since smaller digesters and less stillage

cooling are required. Downstream processes for

stillage utilization and by-product recovery con-

sidered worthy of continued investigation include

the production of feed (from single cell protein

and/or algae production), color removal, and

production of calcium magnesium acetate. The

results of this study suggest that sustainable and

economically viable solutions for mitigating en-

vironmental impacts which result from large-

scale biomass-to-ethanol conversion facilities are

available. However, further research in some

Table 14

Commercial full-scale cellulosics-to-ethanol projects under development in North America [198]a

Feedstock Location Process technology Annual production L/yr Company

Cellulosics Ottawa, Canada Enzymatic 3.8� 106 Iogen

Bagasse Jennings, LA 2-stage dilute acid 38� 106 BCI

MSW Middletown, NY Concentrated acid 38� 106 Masada [285]

Rice straw Sacramento, CA Concentrated acid 45� 106 Arkenol

Rice straw Gridley, CA Enzymatic 76� 106 BCI/Gridley LLC

Softwood wastes SE Alaska nd 23±30� 106 Sealaska

Softwood wastes Chester, CA Enzymatic 76� 106 BCI/Colling Pine

a nd=no data.
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areas is needed to facilitate successful implemen-
tation of appropriate technology options.
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